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     Chapter 7   
 An Enactive Model of Creativity 
for Computational Collaboration 
and Co-creation 

             Nicholas     Davis     ,     Chih-Pin     Hsiao     ,     Yanna     Popova     , and     Brian     Magerko    

7.1            Introduction 

    The modern landscape of computing has rapidly evolved with breakthroughs in new 
input modalities and interaction designs, but the fundamental model of humans giv-
ing commands to computers is still largely dominant. A small but growing number 
of projects in the computational creativity fi eld are beginning to study and build 
creative computers that are able to collaborate with human users as partners by 
simulating, to various degrees, the collaboration that naturally occurs between 
humans in creative domains (Biles  2003 ; Lubart  2005 ; Hoffman and Weinberg 
 2010 ; Zook et al.  2011 ; Davis et al.  2014 ). If this endeavor proves successful, the 
implications for HCI and the fi eld of computing in general could be signifi cant. 
Creative computers could understand and work alongside humans in a new hybrid 
form of human-computer co-creativity that could inspire, motivate, and perhaps 
even teach creativity to human users through collaboration. 

 To reach this optimistic future, the fi eld of computational creativity needs a 
conceptual framework and model of creativity that can account for the collaborative 
and improvisational nature of human creativity. Traditional cognitive science 
theories view cognition and creativity as an abstracted manipulation of symbols that 
happens solely in the brain (e.g., Newell et al.  1959 ). The new cognitive science 
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theory of enaction claims that cognition and creativity always emerge through a 
real-time and improvised interaction with the environment and other agents in that 
environment (Varela et al.  1991 ; Stewart et al.  2010 ). While traditional theories 
could work to incorporate this perception-action feedback loop to model continuous 
improvised interaction, the enaction theory begins with the assumption that all cog-
nition is based on this principle of improvised interactions guided by feedback from 
the environment. Starting from this basic assumption makes developing an enactive 
model of collaborative creativity and co-creation much easier due to their improvi-
sational nature. 

 The overall aim of this chapter is to show how an enactive approach to computa-
tional creativity can make it easier to think about, design, and build creative com-
puters, especially those that are able to improvise in real-time collaboration with 
human users. To situate and motivate our contribution, we fi rst describe the fi eld of 
computational creativity. Next, we introduce the cognitive science theory of enac-
tion and describe creativity through its theoretical lens. Then, we present our enac-
tive model of creativity and explain how its principles helped design “enactive” 
creative systems in two different domains: visual art and design.  

7.2     Computational Creativity 

 Computational creativity is an outgrowth of artifi cial intelligence, cognitive science, 
and creativity research. It studies and builds creative systems involving different 
combinations of creative humans and creative computers. Making creative comput-
ers is a kind of grand challenge for the modern era of computing, and the recent 
efforts in computational creativity show a promising path forward. The fi eld of 
computational creativity can be segmented into three broad categories that each 
have different motivations and goals.  Creativity support tools  augment and enhance 
human creativity, such as Adobe’s Photoshop or Computer Aided Design tools. 
 Generative systems  produce creative artifacts (semi-)autonomously, such as com-
puters that paint pictures (see Fig.  7.1 ) (McCorduck  1991 ;    Colton and Wiggins 
 2012 ) or generate poetry (Colton et al.  2012 ).  Computer colleagues  collaborate with 
human users on creative tasks much like another human would (see Fig.  7.2 ).   

 Once it was established that creativity could be trained, facilitated, and mea-
sured, researchers began to develop techniques to support creativity (Smith et al. 
 1995 ; Guilford  1970 ; Csikszentmihalyi  1997 ). Initially, these techniques were pro-
cedural activities one could engage in to stimulate creativity, such as brainstorming 
and lateral thinking exercises (Rawlinson  1981 ; Bono  1970 ). Researchers also 
began developing a new class of technology referred to as creativity support tools 
(CSTs) (Shneiderman  2002 ; Shneiderman et al.  2006 ;    Hewett et al.  2005 ; Carroll 
et al.  2009 ). CSTs are designed to help users explore a creative domain, record deci-
sion histories, and scaffold skills to allow and encourage users to learn expertise 
(Candy  1997 ; Shneiderman  2007 ). 
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  Fig. 7.1    Art-generating computational creativity systems.  Left : Artwork by The Painting Fool 
(Colton and Wiggins  2012 ).  Right : Artwork by Aaron (McCorduck  1991 )       

  Fig. 7.2    Three approaches in the fi eld of computational creativity       
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7.2.1     Creativity Support Tools 

 Shneiderman distinguishes creativity support tools (CSTs) from productivity sup-
port tools through three criteria: clarity of task domain and requirements, clarity of 
success measures, and nature of the user base ( 2007 ). Productivity support tools are 
designed around a clear task with known requirements, have well-defi ned success 
metrics, and are characterized by a known and relatively well-understood set of 
users. In contrast, CSTs often work in ill-defi ned domains that have unknown 
requirements, vague success measures, and an unpredictable user base. For exam-
ple, consider productivity support tools for the well-defi ned goals of product supply 
scheduling, which include many clearly defi ned variables like cost metrics for ship-
ping effi ciency. Contrast this with a drawing support tool, like ShadowDraw (Lee 
et al.  2011 ) or iCanDraw (Dixon et al.  2010 ), that helps users learn drawing skills 
and inspires creativity. 

 Creativity support tools can take many forms. Nakakoji ( 2006 ) organizes the 
range of creativity support tools with three metaphors: running shoes, dumbbells, 
and skis (Nakakoji  2006 ). Running shoes improve the abilities of users to execute a 
creative task they are already capable of; they improve the results users get from a 
given set of abilities. Dumbbells support users learning about a domain to become 
capable without the tool itself; they build users’ knowledge and abilities. Skis pro-
vide users with new experiences of creative tasks that were previously impossible; 
they enable new forms of execution. A contemporary text editor that highlights 
grammar mistakes is a running shoe; explaining why those wordings are ungram-
matical makes the tool a dumbbell. Collaborative drawing tools would be a type of 
ski because they enable a whole new class of creative expression where the user 
collaborates with a computer. Nakakoji believes CSTs that introduce new creative 
experiences to novices will gain popularity because of the positive impact novel 
creative experiences can have on creative output (Nakakoji  2006 ).  

7.2.2     Generative Computational Creativity 

 The class of creative systems that autonomously produce creative products is 
referred to here as generative computational creativity. This approach is largely 
inherited from AI, and it dissects human creativity into observable behaviors such 
as narrative, poetry, ideation, games, analogy, design, etc. These researchers then 
create computational models for their tightly delineated creativity module with the 
hope and effort to try to integrate those components with other embodied and situ-
ated aspects of creativity later. 

 The typical software architecture for generative computational creativity pro-
gresses as follows: The system fi rst “reads” or interprets a large corpus of material 
into structured representations that it uses as its knowledge base. To make the sys-
tems more “creative,” the corpus is carefully selected to lead to more interesting 
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combinations, such as twitter posts and news articles (Veale and Hao  2008 ; Colton 
et al.  2012 ). These representations form the “conceptual space” the agent traverses 
to fi nd interesting combinations to produce novel output (Boden  2004 ). For exam-
ple, a poetry-generating system might parse a news article into structured 
 representations that can then be spliced and recombined according to hard-coded 
rules of poetry (meter constraints, rhyming patterns, etc.). The conceptual space 
itself can be restructured to reveal additional mappings and traversals within it, 
which is called “transformational creativity” (Boden  2004 ). Finally, those spaces 
are systematically traversed to piece together a novel creative product, which is 
outputted to the user. These types of creative systems typically yield bounded and 
discrete creative artifacts as their output. The recent 2014 International Conference 
on Computational Creativity, for example, was largely dominated by this approach. 

 Based on this distinction, a system can be referred to as generative if it does not 
constantly interact with its environment through both perception and action to cre-
ate an artifact. Instead, it relies on building a large knowledge base from a corpus 
and then manipulating elements of that corpus to develop new artifacts. The “cre-
ativity” that generative systems exhibit occurs in an abstracted manipulation of 
symbols without a perception-action feedback loop with the environment. While the 
end product may resemble something we might expect of a “creative” human, we 
argue these systems leave out one of the most fundamental ingredients to human 
cognition—the environmental feedback loop.  

7.2.3     Computer Colleagues 

 Computer colleagues are the newest and perhaps most ambitious venture in the 
space of computational creativity because they require a method for controlling 
real-time improvisational interaction with a user in addition to some mechanism for 
generating original creative contributions to the shared artifact. There are several 
options for algorithms that generate creative contributions (as discussed previ-
ously), but understanding how to get the agent to improvise in real time is diffi cult. 
A good starting point is to understand collaboration and co-creativity in humans, 
which is classifi ed as multiple parties contributing to the creative process in a 
blended manner (Mamykina et al.  2002 ). It arises through collaboration where each 
contributor plays an equal role. Contrast this blended model with cooperation, for 
example, which can be modeled as a distribution of labor where the result only rep-
resents the sum of each individual contribution (Mamykina et al.  2002 ). 

 Co-creativity allows participants to improvise based on decisions of their peers. 
Ideas can be fused and built upon in ways that stem from the unique mix of person-
alities and motivations of the team members (Mamykina et al.  2002 ). Here, the 
creative product emerges through interaction and negotiation between multiple par-
ties, and the sum is greater than individual contribution. These interaction principles 
can be extended to include a suffi ciently creative agent that can collaborate with 
human users in a new kind of human-computer creativity. 
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 Some approaches that have yielded interesting examples of computer colleagues 
use mimicry, structured improvisation, and shared mental models. For example, the 
improvisational percussion robot Shimon mimics human musicians by analyzing 
the rhythm and pitch of musical performances and generating synchronized melodic 
improvisations (Hoffman and Weinberg  2010 ). In practice, the human and robot 
develop a call-and-response interaction where each party modifi es and builds on 
the previous contribution. Some co-creative agents use sensory input to construct 
mental models of agents, actions, intentions, and objects in the environment 
(Hodhod et al.  2012 ). Mental models help agents effectively structure, organize, 
interpret, and act on sensory data in real time, which is critical for meaningful 
improvisation. 

 Although there are only a few examples of computer colleagues today, they raise 
interesting questions about what it means to collaborate with a computer. These 
projects also point to the need for a general cognitive theory of collaboration and 
improvisational creativity that can be used to guide their interaction design and 
software architectures. We contend that enaction can fulfi ll this need.   

7.3     The Enactive Paradigm 

 In the following sections, we describe how the enactive approach reframes percep-
tion into an active and dynamic process critical for participatory sensemaking, i.e., 
negotiating emergent actions and meaning in concert with the environment and 
other agents. Next, we examine the role of goals and planning in the enactive per-
spective. Finally, we review some sketching and design research to show evidence 
that enaction plays a key role in the creative process when creative individuals 
“think by doing.” 

 Enactive cognition is an outgrowth of the embodiment paradigm in cognitive 
science. Embodiment claims cognition is largely structured by the manner in which 
our bodies enable us to interact with the environment (Varela et al.  1991 ). This 
approach is contrasted with earlier cognitive theories that conceptualized the mind 
as a machine and cognition as a complex but disembodied manipulation of symbolic 
representations (   Newell et al.  1959 ). In particular, enaction emphasizes the role that 
perception plays in guiding and facilitating emergent action (De Jaegher  2009 ). 
A short defi nition of enactivism by Havelange ( 2010 ) will help summarize this 
distinction. 

 Here, cognition is no longer considered as a linear input/output sequence (as was 
the case in classical cognitivism) but rather in terms of a dynamic sensorimotor loop 
by taking into account the fact that actions themselves produce feedback effects on 
subsequent sensations. Action is thus no longer a simple output; it becomes actually 
constitutive of perception. What is perceived and recognized in perception are 
the invariants of the sensorimotor loops, which are inseparable from the actions of 
the subject. 
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 The enactive approach takes fi rst person experience and awareness of the cogni-
tive agent as the starting point. It advocates for an intelligent perception and action 
system that pairs interesting actions and related percepts as a coupling that are 
stored to guide future interactions. Enaction is rooted in the notion that cognitive 
agents always experience reality as a continuous interaction with the world and any 
investigation or model should have interaction as its fundamental constituent. 

7.3.1     Enactive Perception 

 Perception is not a passive reception of sensory data but rather an active process of 
visually reaching out into the environment to understand how objects can be manip-
ulated (Gibson  1979 ; Noë  2004 ). In the enactive view, cognition is seen as a process 
of anticipation, assimilation, and adaptation, all of which are embedded in and con-
tributing to a continuous process of perception and action. This type of enactive 
perception minimally involves a negotiation among the following factors: (1) the 
subject’s intentional state, (2) the skills and bodily capabilities of the individual, and 
(3) perceptually available features of the environment that afford different actions 
such as size, shape, and weight (e.g., is it graspable, liftable, draggable, etc., as 
elaborated in Norman ( 1999 )). Sensory data enters the cognitive system and irrele-
vant data is suppressed and fi ltered (Gaspar and McDonald  2014 ). Objects and 
details of the environment that relate to the subject’s intentional goals appear to 
conscious perception as affordances, which can grab, direct, and guide attention and 
action (Norman  1999 ). Each time the individual physically moves through or acts 
upon the environment, that action changes the perceptually available features of the 
environment, which can reveal new relationships and opportunities for interaction.  

7.3.2     Participatory Sensemaking 

 The enactive view accentuates the participatory nature of meaning generation, often 
called participatory sensemaking. Each interaction with the environment can (and 
often does) reveal new goals, which leads to a circuitous, rather than a linear, cre-
ative process. Creative individuals engage in a dialogue with the materials in their 
environment (and other agents) to defi ne and refi ne creative intentions (Schön 
 1992 ). 

 In human daily interactions, for example, there is evidence that some form of 
natural coordination takes place in the shape of movement anticipation and synchro-
nization. A good example of participatory sensemaking would be the familiar situ-
ation where you encounter someone coming from the opposite direction in a narrow 
passageway (De Jaegher  2009 ). While trying to negotiate a safe and quick passage, 
both participants look toward their intended path (providing a social cue) while also 
trying to assess the projected path of other agents. Interaction then, in the form of 
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coordination of movements, is the decisive factor in how quickly the individuals 
achieve their goal of passing each other. Rather than adopting a plan with a fi xed 
and concrete goal to control locomotion, an enactive analysis would posit that indi-
viduals remain fl exible throughout the situated action by dynamically accommodat-
ing the choice of the other agent.  

7.3.3     Goals and Directives 

 In the traditional view of information processing, in order to accomplish goals, an 
agent would follow certain steps according to a preset plan for solving the particular 
problems defi ned by concrete goals. From an enactive perspective, intelligence and 
creativity involve knowing how to change the fl ow of sensory information in order 
to explore possibilities for action, i.e., leaning in closer to get a better look at some-
thing. It is often simply easier to act on the environment and experiment with how 
different interactions affect the system than representing it in its entirety and per-
forming symbolic processing on those representations like the information process-
ing perspective proposes (Noë  2004 ). Even at the level of social interaction with an 
intelligent agent, an enactive approach tries to avoid postulating high-level cogni-
tive mechanisms at the core of our intersubjective skills. The coevolution of a com-
municative/creative process is seen here as a gradual unfolding in real time of a 
dynamic system spanning a human subject, the environment, and agents within it. 
In this view, intentions emerge but are also transformed in and through the interac-
tion with other agents and the environment. 

 Thus, instead of describing creative behavior as goal-based planning and infor-
mation processing, we have adopted the enactive terminology of directives (Engel 
 2010 ). A “directive” is a loose intention that directly infl uences what things appear 
interesting or salient in the environment and how specifi c types of interactions 
might provide more information about emerging hypotheses. A directive is similar 
to a goal in that it can be refl ected on, elaborated, and specifi ed in more detail, but 
it is critically different from the current notion of “goal” in planning-based AI 
because it does not constitute action in any way. A directive constrains and suggests 
potential actions that could yield productive changes in an emergent process of 
sensemaking. See Fig.  7.3  for an illustration of goals compared to directives.  

 To illustrate the distinction between directives and goals, let us consider an 
example in the creative domain, such as painting a picture. Yokochi and Okada 
( 2005 ) analyzed the painting process of a famous Japanese painter. He found that 
the artist began with a vague “directive” (our term) that is then refi ned and explored 
through interacting with the painting. Each new line adds an additional constraint 
and affects all the existing constraints created by previous lines. Whenever the 
painter decides to alter some part of the image, the enactive perspective would claim 
he has defi ned a “task” for himself. This task is similar to a goal in goal-based AI; 
in Fig.  7.3 , tasks correspond to the small actions that serve to explore the problem 
space of the directive. Accomplishing a task can be modeled    in an enactive manner 
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(improvisation and affordance-based interactions) or using any number of search 
and planning procedures defi ned in goal-based AI. 

 Once the painter takes a step back to understand his last contribution in terms of 
the overall picture, however, he may fi nd that his last contribution actually disrupted 
the overall balance of the piece. Although he doesn’t have a specifi c end state for the 
painting in mind, one of the directives guiding his work may relate to achieving an 
overall balance in the composition. This directive does not tell him what  contributions 
to make, but it helps point out inconsistencies and visual tensions that need to be 
addressed. 

 Let us suppose that the artist found fi ve areas of the drawing that all violated his 
sense of balance due to his last contribution. He then selects one of those areas and 
defi nes a specifi c painting tasks that he predicts will help achieve balance. Once the 
fi rst of those fi ve areas is complete, the artist could take another step back and real-
ize that his latest contribution makes the left side of the artwork look kind of like a 
face, which he likes. The artist might then update his overall directive to creating 
some kind of abstract face. Once this directive is adopted, the entire canvas is ana-
lyzed with respect to face-like features. Given this new constraint, he sees additional 
opportunities to change the drawing and would then select specifi c painting tasks 
that contribute toward the current directive. Here, the directive is dynamic and 
always evolving through interaction with the environment. The feedback offered by 
actually producing a change in the environment spurs new ideas and interpretations 
that can change the overall directive. The directive determines the constraints and 
affordances that are consciously available to the painter’s perceptual processes. 

 Ultimately, it is the continuous perception-action feedback loop that actually 
determines actions. Instead of thinking of action as a series of behaviors executed 

  Fig. 7.3    Comparing goals and directives. Goals are linear with a series of steps whereas directives 
are vague and gradually refi ned through a process of interacting with the environment and defi ning 
tasks that explore the problem space outlined by the directive       
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like scripts or plans, we can think of action as a continuous improvisation with the 
environment. Attention and the conscious experience of the agent become the com-
mon thread that stitches the fl ow of each individual action together. 

 Attention of the agent drives the system by changing the fl ow of sensory infor-
mation. Depending on the current directive, the system “perceives” sensory infor-
mation in different ways. At this point, the reader might ask: How can the same 
sensory information be perceived in different ways? If we imagine sensory input as 
a fl ow through time, we can then consider adding different “lenses” to perception to 
fi lter that sensory input in different ways. Different fi lters make different features of 
the environment salient. If they are salient enough, they will demand the attention 
of the individual, which might then prompt subsequent interaction. We call this fi l-
ter perceptual logic because it enables a form of direct perceptual reasoning. The 
directive guides attention toward facets of the environment that are relevant to the 
current intention of the agent. The old adage “when you have a hammer everything 
looks like a nail” is quite illuminating to consider in this context. Once a hammer is 
picked up, the general directive of hammering is established, and this directive 
guides attention and action, which results in things being perceived in terms of their 
“hammerabil   ity.” 

 To summarize the idea of a directive, a directive does not dictate action; it selects 
a fi lter for perception that (we propose) enables a perception-based reasoning pro-
cess we call perceptual logic. Actions are not discrete units but rather exist as an 
emergent fl ow of interactions with the environment. Some actions are executed in 
service of tasks, while other actions help gain different perspectives, including 
changing physical location as well as changing the directive with which a scene is 
analyzed. This process is guided by attention and the awareness of the agent and is 
inherently based on the temporal fl ow of experience and the dynamics of interaction 
with the environment.  

7.3.4     Enactive Creativity Thesis 

 To account for the emergent nature of cognition and of creativity, we can make sys-
tems that are designed from the ground up as improvisational collaborative agents. 
Their “intelligence” and “creativity” would then emerge organically through inter-
acting with intelligent and creative humans. Current AI systems are good at con-
strained and specialized tasks, but tasks that require common sense and creativity 
(like collaboration and improvisation) are notoriously diffi cult to model computa-
tionally. Humans use what is referred to as “commonsense knowledge” to adapt 
their actions and understand everyday situations. The so-called commonsense prob-
lem in AI refers to the huge knowledge databases required to achieve what humans 
normally take for granted as common sense. Building such a large database of 
knowledge is notoriously diffi cult and labor intensive, which is one reason why a 
general purpose AI does not exist today. Creativity goes a few steps beyond the 
commonsense problem because it introduces open-ended domains that do not 
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necessarily have correct solutions. Collaboration further complicates this issue 
because it involves coordinating with other agents in a creative process. For these 
reasons, collaborative creativity is an extremely diffi cult target for traditional AI 
approaches. 

 This crack in the theoretical foundation of AI and computational creativity once 
seemed like a problem that would only take more computing power, larger knowl-
edge bases, and more sophisticated machine-learning algorithms to solve. However, 
we think this problem refl ects a larger systemic issue stemming from the basic 
assumptions about the nature of human cognition in AI and computational creativ-
ity. Once cognition and creativity are reframed in an enactive perspective, these hard 
problems become much more manageable. 

 Computationally creative systems employing the enactive perspective are based 
on a continually fl owing and dynamic interaction with an environment rather than 
discrete actions and goal-oriented planning. An enactive investigation of creativity 
therefore begins at the level of perception, action, an environment, and the feedback 
loop that emerges during interaction. Enactive agents learn by experimentally inter-
acting with their environment and perceiving the effects of those actions in a feed-
back loop, similar to a baby fi rst learning to make sense of her senses. From this 
perspective, learning takes place when actions that produce a pleasing perceptual 
correlate (including a reaction from another agent, such as a mother cooing) are 
remembered as a percept-action pairing. These percept-action pairings are then 
repeated and built upon in an attempt to create shared meaning and experiences 
through participatory sensemaking, whereby agents coordinate their intentions 
through interaction and negotiation (Stewart et al.  2010 ). 

 The enaction theory describes creativity as a continual process whereby cogni-
tive agents adaptively and experimentally interact with their environment through a 
continuous perception-action feedback loop to produce structured, organized, and 
meaningful interactions in an emergent process of sensemaking (or participatory 
sensemaking when multiple agents are collaborating). The emergent sensemaking 
process that results in creativity is fundamentally based on (and therefore inextrica-
bly bound to) continuous real-time interaction between an agent and its environ-
ment. During this type of emergent creativity, loose “directives” that guide actions 
are negotiated and fl uidly defi ned, refi ned, or discarded altogether depending on 
how other collaborating agents and the environment respond to the agent’s actions. 
While an enactive agent still defi nes directives that serve to guide actions, these 
directives merely constrain (rather than constitute) possible opportunities to explore 
in the environment. 

 In this process, experience, practice, and concentration help develop more 
nuanced and detailed percept-action couplings that afford a greater depth of interac-
tion with the world. This means we cannot explain expertise relying exclusively on 
huge databases of representations manipulated in a rule-based manner (like case- 
based reasoning, analogical reasoning, blending, evolutionary algorithms, etc.). 
Experts know exactly where to look, what to look at, and when to look at it to fi gure 
out how to effectively navigate their domain of expertise. If the right information is 
not available, then experts know how to either restructure their sensory information 
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(change viewpoints) or restructure the environment (take action) in order to explore 
further possibilities for interaction that will in turn help evaluate emerging theories 
and also reveal additional actions. It is the dynamics of this feedback loop that need 
to be understood and modeled in order to understand the improvisation that inher-
ently undergirds creativity.  

7.3.5     Enactive Creativity Examples 

 The literature on creativity provides evidence supporting the enactive perspective 
with research on “thinking by doing.” There is a multitude of evidence demonstrat-
ing how both representational and nonrepresentational artists plan their artworks 
using sketches, studies, and other ways to simulate artistic alternatives (Mace and 
Ward  2002 ). Sketching reduces cognitive load and facilitates perceptually based 
reasoning (Schön  1992 ). In many creative domains, individuals generate vague 
ideas and then use some form of sketch or prototyping activities to creatively 
explore, evaluate, and refi ne artistic intentions (Davis et al.  2011 ). Sketching allows 
creative individuals to think by doing. When an action or idea is materialized in 
some way, the perceptual system is rewarded with richer data than pure mental 
simulations and abstract reasoning. Additionally, cognitive resources that would 
have been used to simulate the action (i.e., consciously visualizing the situation) are 
now freed for other tasks such as interpretation and analysis (Shneiderman  2007 ). 

7.3.5.1     Architectural Design 

 One obvious example of using sketch to “think by doing” can be found in the task 
of planning the spatial confi gurations in the architectural design process. As 
addressed above, generating an entire artifact with all of its details directly from the 
mind is virtually impossible for a designer (Schön  1992 ). Instead, designers experi-
ence these improvised real-time adjustments in the design procedures with the tools 
and materials they are using. When starting the design process, designers choose 
different materials, tools, and media to present the initial ideas from their minds to 
explore the constraints of their problem (Schön  1992 ). When they interact with 
these tools, they might need to adjust their actions in order to achieve their needs. 
For instance, when drawing a sketch to study the forms, they may need to constantly 
adjust the “next steps” in order to solve the design constraints, such as not enough 
space, too long, too much curvature, etc. 

 Figure  7.4  illustrates a typical spatial plan of a student center in a bubble dia-
gram. Since the plan entails many spaces, the designers would have to write down 
all the space names so that related spaces are located next to each other. They would 
also use arrows to represent the main circulation paths between two spaces. Each 
time a new space is added or an arrow is inserted, the designer’s fl ow of sensory 
information changes and they might discover new problems or opportunities that 
were not apparent before (Suwa and Tversky  1997 ). Sketching facilitates their 
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creativity and reasoning process through a dynamic perception-action feedback 
loop whereby new meanings are gradually constructed through a negotiation with 
the design materials (i.e., sketch, physical models, computational models, etc.).  

 Experienced designers also change the granularity of their perception to reason 
about sketches at different levels. When focusing on individual details, an architect 
might imagine how a particular corridor might feel to walk through. Then, they 
could shift to a global perspective that considers the overall theme and consistency 
of the whole building design (Suwa and Tversky  1997 ; Goldschmidt  1991 ).  

7.3.5.2     Musical Performance 

 The enactive nature of creativity can also be seen in live musical performance. A 
classical musician, for example, a trumpet player, will need to feel the acoustic 
effects in a concert hall before his performances. For instance, he may extend the 
ending of a sound in a concert hall that has a “dry” acoustic effect. We propose the 
expert trumpet player has a well-established set of percept-action pairings (creating 
his expert perceptual logic) that have to be tuned to the particular performance space 
because the actions he will take in the performance will result in a slightly different 
perceptual feedback process than his normal practice space. Thus, he has to actively 
feel and explore the sounds of the space to align his perceptual logic with the specif-
ics of the exact situation. Furthermore, during performance, he will also listen to the 
mixture of his trumpet sound with other sounds to make real-time adjustments to 
achieve the desired general effective (i.e., the directive, such as playing a “sad” tune).  

  Fig. 7.4    Spatial layout of a school student center design (Courtesy of Kyle Doggett)       
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7.3.5.3     Visual Art 

 The enactive nature of creativity in visual art is demonstrated well by the fi ndings 
showing that expert artists often step away from their paintings to gain a new per-
spective (Yokochi and Okada  2005 ). Here, enaction would claim that expert artists 
have acquired percept-action pairings that constitute experiential knowledge: 
Altering the fl ow of sensory information can reveal additional possibilities for 
action. The percept-action coupling is moving the body (actions) and gaining differ-
ent viewpoints (percepts). There is no preset specifi c goal driving the artist’s deci-
sion to step back, and there is not a “step-back-and-think script” the artist executes 
at predefi ned times. Instead, there might be some open questions about how to inter-
act with different regions of the artwork and a vague intention to address those 
concerns. Stepping back helps think about how interacting with those areas might 
affect the overall vague intention. The “creative” behavior of stepping back is actu-
ally an emergent by-product of how cognition and creativity work. The fact that the 
artist stepped back (her behavior) is therefore not as important as why she stepped 
back, i.e., how she knew that stepping back was the right thing to do. An expert is 
an expert precisely because she knows how to direct her attention and manipulate 
the fl ow of sensory information through interactions with the environment to explore 
and evaluate possibilities for further action. 

 The domain-independent examples above provide evidence that creativity does 
not only come from executing planned steps and actions but emerges through 
improvisational micro interactions between the human and the surrounding envi-
ronments, including other humans, tools, and, most importantly, the continuous 
results generated during the percept-action feedback loop. We consider these inter-
action processes as an improvised interaction processes. Humans often experience 
the results from unplanned micro interactions that match or mismatch their expecta-
tions, which will then become perceptual logic for future interactions. We argue that 
this enactive feature of cognition is fundamental to understanding how to under-
stand human creativity and also build computer colleagues.   

7.3.6     Enactive Model of Creativity 

 The argument here is that the traditional cognitive science theories used by AI are 
inadequate to explain the entirety of human creativity (and cognition more broadly) 
and should thus be supplemented, augmented, or potentially replaced entirely with 
an enactive conceptualization of cognition. In the enactive view, cognition (includ-
ing creativity) is inherently composed of a continuous interaction with the environ-
ment and other agents in that environment to adapt and thrive (Stewart et al.  2010 ); 
it is improvisational and ever changing based on the demands and opportunities of 
the moment. The enactive view encapsulates the embodied, situated, distributed 
cognition perspectives that have recently gained popularity (Suchman  1986 ; 
Hutchins  1995 ). From this view, cognition is not inherently goal-based planning 
procedures, as the search and planning-centric approaches in AI suggest. Although 
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we certainly construct plans to try to organize our interactions with the environ-
ment, they are never constitutive of the actual creative process, which is enacted in 
concert with feedback from the environment. We cannot cut off this real- time inter-
action feedback loop with the environment in any way if we hope to create a realis-
tic model of creativity and cognition. 

7.3.6.1     Model Description 

 We fi rst explain the visual conventions of the enactive model of creativity and 
describe how it can be applied to model creative cognition through time. Then, we 
describe in detail a new concept derived from our model called perceptual logic, 
which is a perceptual fi lter that highlights relevant affordances in the environment 
while suppressing irrelevant affordances. Next, we explain how modulating percep-
tual logic leads to different ways of seeing and interacting with the world in a way 
that can account for the diverse array of human creative behavior. 

 In the enactive model of creativity (see Fig.  7.5 ), the awareness of the agent is 
represented by the vertical rectangle situated on a spectrum of cognition, which 
essentially means that the agent is “aware” of what is perceived and its current 
intention. Perception is constituted partly by the mental model the agent has con-
structed for the current situation (top-down cognition) as well as the sensory input 
coming from the environment (bottom-up cognition) (Gibson  1979 ; Glenberg  1997 ; 
Varela et al.  1991 ; Stewart et al.  2010 ; Gabora  2010 ).  

  Fig. 7.5    Enactive model of creativity       
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 To get a sense of the intended dynamism of this model, imagine the entire 
“awareness” rectangle as one unit that can shift to the left or right on the cognitive 
continuum as a function of the agent’s concentration. Routine actions only require 
minimal thought and a limited amount of highly relevant sensory data. The enactive 
model of routine actions, such as driving, would be visually depicted by having the 
awareness rectangle resting at equilibrium in the center of the spectrum with small 
deviations to the left to update and revise strategy and deviations to the right to 
interactively evaluate those ideas. 

 To simulate bounds on working memory, the agent only has a limited amount of 
cognitive resources. These resources are used through a process of directed atten-
tion, i.e., concentration. During this simulated form of concentration, agents devote 
their attention to refl ecting on the situation (building more detailed mental models, 
running complex mental simulations, etc.) or acting in a deliberate and interactive 
manner to inspect the world. 

 If the agent is performing an unfamiliar task, however, cognitive resources are 
recruited to actively build a mental model of the situation, which requires perform-
ing experimental interactions, closely examining the results in the environment, and 
then updating the mental model in a slower global model of perceptual logic. 
   Initially, novices have to think a lot about what they are doing, which means they are 
using a lot of the previous attention resources to build up a cognitive model by per-
forming micro experiments interacting with the world to hypothesize about this 
particular domain. As novices build up this model, they begin to interact without 
having to pay as much attention to what they are doing. The enactive model claims 
this happens because the experienced individual is able to use the new perceptual 
logic to fi lter irrelevant sensory details and operate effectively with minimum con-
scious supervision of a task (see Fig.  7.6  for an illustration of different layers of 
perceptual logic).   

7.3.6.2     Perceptual Logic 

 According to the enactive model of creativity, the contents of perception vary based 
on an individual’s position on this continuum of cognition (Glenberg  1997 ). As indi-
viduals deviate from the equilibrium in the center of the spectrum, perception 
becomes partially “unclamped” (a term coming from Glenberg’s ( 1997 ) theory of 
memory) which loosens semantic constraints on sensory input and memory. Different 
points on the cognitive spectrum result in a unique perceptual logic that is used to 
intelligently perceive affordances in the environment. The enactive approach in cog-
nitive science describes the “intelligence” of perception in a theoretical sense, but 
operationalizing the theory required explaining the implicit black box mechanism 
that makes perception “intelligent.” The mechanism basically serves to fi lter all pos-
sible affordances and present only relevant affordances to conscious perception. 

 The enactive approach proposes that perceptual intelligence arises through the 
formation of percept-action pairings that are chunked and internalized for quick 
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retrieval (Noë  2004 ). Perceptual logic is a proposed cognitive mechanism that fi lters 
sensory data, identifi es relevant percept-action pairings, and presents these percept- 
action pairings as affordances to perception. Perceptual logic performs a similar 
role as the “simulator” in Perceptual Symbol Systems (Barsalou  1999 ). The simula-
tor activates all the associated neural correlates related to a percept, including the 
various ways it can be interacted with based on experiential knowledge and physical 
characteristics.  

7.3.6.3     Clamping Perception 

 Research indicates that perception fi lters irrelevant sensory input to reduce distrac-
tions and facilitate everyday cognition (Gaspar and McDonald  2014 ). When the 
agent is engaged in a routine task and following well-established affordances, sen-
sory data is “clamped” to fi lter out unnecessary details and unconventional ways of 
seeing objects (Glenberg  1997 ). Everyday cognition is represented in EMC by situ-
ating the awareness rectangle in the center of the spectrum of cognition, creating a 
point of equilibrium. Shifting to either the left or right on this spectrum requires the 
agent to either concentrate on the details of her mental model or closely inspect 
details in the environment. At equilibrium, perception is clamped to a combination 
of sensory input and cognitive input that optimizes routine interactions (Glenberg 
 1997 ). When minor problems arise, such as small improvisational adjustments to 
the action based on environmental feedback, this equilibrium is slightly perturbed. 
The agent could generate various alternative actions by thinking (moving slightly 
left on the spectrum) and explore various ideas by interacting with the environment 
(moving slightly right on the spectrum).  

7.3.6.4     Unclamping Perception 

 If there is a severe disruption to the current task (e.g., a great new idea, distraction, 
or some kind of failure), it might become necessary to disengage from the current 
task to reevaluate the situation. When an individual “disengages” from a task, per-
ception becomes “unclamped” and attention shifts to thinking and simulating solu-
tions (moving far left on spectrum) and closely examining the detail of the 
environment to discover new affordances (moving far right on the spectrum). The 
degree of concentration devoted to thinking about or acting on the environment 
determines how far, in either direction, awareness is situated on the spectrum of 
cognition. At the extreme left of the continuum (thinking) would be closing one’s 
eyes to try to think deeply about a topic, which removes most sensory input from 
perception altogether. At the extreme right of the continuum (inspecting) would be 
an individual fully concentrated on acting skillfully, carefully, and deliberately on 
the environment.  
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7.3.6.5     Modulating Semantic Constraints 

 During these periods of disengaged evaluation, EMC proposes that the semantic 
constraints for recalling associated ideas from memory and interpreting elements in 
the environment become “unclamped” to enable reconceptualization. Unclamping 
semantic constraints helps overcome functional fi xedness, which is a phenomenon 
where individuals have trouble dissociating objects from their entrenched meaning 
during insight problem-solving (Adamson  1952 ). 

 In the cognitive science literature, the abovementioned type of meaning reassign-
ment is referred to as a  conceptual shift  (Nersessian  2008 ). Colloquially termed the 
Eureka! or Aha! moment, conceptual shifts occur when two separate knowledge 
domains are connected in the mind (Boden  2004 ; Nersessian  2008 ). It is often par-
tially or wholly responsible for insights that lead to creative discoveries and solu-
tions. The enactive model suggests that conceptual shifts and creative 
reconceptualizations are made possible by unclamping perception, thereby allowing 
new meanings to be associated with objects and concepts. 

 Interestingly, this model identifi es an important role for distraction in the creative 
process. Distraction is one way to prompt an individual to disengage from everyday 
cognition. In abstract art, for example, unfi nished segments of the artwork (or unex-
pected contributions from a collaborator) may distract the artist while they are 
drawing. These newly discovered areas might not align with the artist’s current 
intention. As a result, the artist might want to resolve that tension by drawing addi-
tional lines, which can catalyze the creative process. However, too many distrac-
tions might frustrate the artist. 

 Now that we have introduced enaction and presented the enactive model of 
 creativity, we will describe how this model was helpful in designing two computer 
colleagues in the domains of visual art and design.    

7.4     Building Co-creative Agents with the Enactive Model 

 The enactive model of creativity served as a productive framework to design co- 
creative agents because it enables agents to interactively adapt their perceptual rea-
soning strategies and creative behavior to that of the user, which increases the 
probability the user will fi nd the contributions of the system meaningful and cre-
atively engaging. 

7.4.1     Layers of Perceptual Logic 

    There are three layers of perceptual logic in the enactive model of creativity (local, 
regional, and global) that are determined by the position of awareness on the spec-
trum of cognition (see Fig.  7.6 ). Each successive layer of perceptual logic considers 
a larger portion of the creative artifact (i.e., more sensory data) at a higher level of 
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conceptual abstraction (global being the most complex). Since each layer is more 
complex than the next, we found the most effective implementation strategy to be 
implementing them progressively in stages starting with the most basic local layer 
of perceptual logic. 

 Local perceptual logic considers granular details of the user’s contributions, such 
as individual lines added to a drawing. Regional perceptual logic, on the other hand, 
groups the user’s inputs into regions and containers based on principles of gestalt 
grouping, such as proximity, similarity, common fate, and continuity (Arnheim 
 1954 ). The principles of gestalt grouping were encoded into this layer of perceptual 
logic to provide a means for the system to begin to make sense of creative contribu-
tions in a similar way as humans. 

 Global perceptual logic considers the creative artifact as a whole, like when an 
artist takes a step back from their painting. This form of perceptual logic considers 
the relationship between the different regions of the drawing to analyze the overall 
composition. When this perceptual logic is applied, the system may decide to com-
pletely decouple its contribution from the human’s recent input, i.e., it can select 
non-active regions of the artifact on which to operate if those regions present signifi -
cant creative opportunities. For example, a drawing system might examine the over-
all composition and determine that the left side of the drawing is imbalanced because 
it has signifi cantly less lines overall than the right side of the drawing. The system 
employs global perceptual logic to reason about the drawing as a whole and set a 
directive of “do work on the left-hand side of the drawing.” After this directive is 
determined, the system would then employ either regional or local perceptual logic 
to determine the exact lines to draw on the left-hand side of the page. The directive 
therefore constrains the possible actions the system could potentially take and 
guides interaction going forward, but it does not determine actions in any way, 
which is the critical difference between directives and goals.  

  Fig. 7.6    The layers of perceptual logic: The position    of awareness ( gray ball ) on the spectrum of 
cognition corresponds to the layer of perceptual logic the system uses       
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7.4.2     Drawing Apprentice 

 The Drawing Apprentice is a co-creative agent that collaborates with human users 
to draw abstract artworks on a digital canvas in real time (Davis et al.  2014 ). The 
system improvises with users in a turn-taking manner. First, the user draws a line. 
The system then reacts with a line of its own. The system analyzes the user’s lines 
and drawing behavior (i.e., line length, speed, time between strokes, location, etc.) 
through time to construct a directive. This directive guides how the agent perceives 
its environment (lines) by applying one of the three layers of perceptual logic that 
each consider different scales of the drawing (i.e., local, regional, and global). Local 
perceptual logic modifi es individual lines (i.e., mirror, translate, scale, trace, shade, 
etc.) and redraws them. Regional perceptual logic employs gestalt principles to 
group lines into regions that can be modifi ed in a similar way as individual lines. 
Finally, the agent can consider the relationship between groups to evaluate the over-
all composition, such as balance. The agent doesn’t have any pre-encoded drawing 
algorithms, per se. It only has the ability to direct its attention, perceive the user’s 
lines, and manipulate and interact with those lines according to its perceptual logic. 
The program will be provided with some perceptual rules of gestalt grouping to 
inform perception how to group sensory input into larger gestalt wholes (i.e., prin-
ciples of perceptual grouping: good continuity, closure, proximity, fl ow, etc.) that 
allow the system to build its own knowledge base through its experience collaborat-
ing with artists (   Fig.  7.7 ).   

7.4.3     Multiple Sets of Perceptual Logic 

 The argument we have built in this chapter contends that experts gradually develop 
perceptual logic that enables them to intelligently perceive their environment to 
navigate specifi c situations. When a creative expert attempts to accomplish their 
creation process on a creativity support tool, like a designer using a traditional CAD 
tool, they have to acquire a completely different set of perceptual logic relating to 
how to navigate the interface and accomplish tasks. Users have to alternate between 
these sets of perceptual logic when they interact with creativity support tools, which 
can take users out of the immersive and interactive fl ow that the enactive model of 
creativity proposes is critical for facilitating creativity. As a result, people often use 
CAD tools at late stages in the design process to fi nalize their design, instead of 
using them to facilitate creative thinking and exploration early in the design process. 
One overarching design principle of an enactive approach is to design interactions 
as conversations, where each party tries to understand and build meaning through 
negotiation and feedback over time. In a conversation, each person actively works 
to understand what was said and respond appropriately. This suggests that creativity 
support tools might develop a dynamic model of the user over time based on their 
interactions and behaviors such that we might understand what type of perceptual 
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logic and creative strategy the user is currently employing and offer the right tools 
at the right time.  

7.4.4     Solid Sketch 

 Solid Sketch is an example of a CST that utilizes the concepts we describe in the 
previous section. It is a sketch program for 3D model creation that constantly 
observes the user’s sketch inputs and reacts in real time based on the context deter-
mined by the previous and surrounding sketches. The enactive model of creativity 
serves two roles in this prototype. One is to help the system understand the percep-
tual logic the user employs throughout their creative process. The other use is to 
facilitate natural interactions when designing the prototype. For the fi rst purpose, 

  Fig. 7.7    Drawing Apprentice collaboration. User’s lines are  black ; AI agent’s lines are  blue  (Color 
fi gure online)       
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the program uses the enactive model of creativity to construct cognitive models of 
how humans construct the entire 3D model from sketches at different levels, e.g., 
local, regional, and global. For the system, its local perceptual logic tries to under-
stand the relationship between the geometry, such as the angle between two sketch 
lines. Regional perceptual logic attempts to compose nearby sketch lines into coher-
ent part of the model. Global perceptual logic composes those regional perceptual 
logic groupings into a meaningful overall model. The second use of the enactive 
model is to facilitate the conversation like creation process instead of having users 
to execute commands explicitly one by one, such as the traditional CSTs that require 
users to execute commands and input complicated equations explicitly. The enac-
tive agent in Solid Sketch sits in the background, perceives the user’s actions, inter-
prets h   is intentions, and leverages its understanding of the user’s intention to help 
the user achieve their current goal. The fi nal products after interacting with the 
system will include not only a 3D model but also a set of parametric rules that 
describe how the user created the model (Fig.  7.8 ).    

7.5     Conclusions 

 Computational creativity has the potential to radically change what it means to 
interact with computers. However, in order to reach its full potential, the fi eld needs 
a cognitive theory of creativity that accounts for the enactive nature of creativity, 
including improvisation, collaboration, and a tight feedback loop with the environ-
ment. In this chapter, we provided a brief summary of the current state of computa-
tional creativity and pointed out the shortcomings of the traditional information 
processing view of cognition. We argued that the new cognitive science paradigm of 

  Fig. 7.8     Left    : A simple 3D model done with Solid Sketch.  Right : The system interprets the human 
natural sketch into parametric information       
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enaction provides a helpful way to reframe creativity and potentially solve some of 
the long-standing hard problems that both artifi cial intelligence and computational 
creativity face. The theory of enaction was used to describe creativity in design, 
music, and visual art to show its potential for generalizability and descriptive power. 
We also presented the enactive model of creativity that formalized the enaction 
theory in a computational model. Finally, we describe how the enactive model of 
creativity was helpful in designing two computer colleagues, one in the domain of 
visual art and the other in the domain of design. The primary design principle of the 
enactive model of creativity is to design interactions like a conversation where each 
party tries to make sense of contributions and respond appropriately given the his-
tory of interaction.     
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