

 Employing Fuzzy Concepts for Digital Improvisational Theatre

Brian Magerko, Peter Dohogne, and Chris DeLeon
Georgia Institute of Technology

{magerko, pdohogne3, cdeleon3}@gatech.edu

Abstract
This paper describes the creation of a digital improvisational
theatre game, called Party Quirks, that allows a human user
to improvise a scene with synthetic actors according to the
rules of the real-world Party Quirks improv game. The AI
actor behaviors are based on our study of communication
strategies between real-life actors on stage and the fuzzy
concepts that they employ to define and portray characters.
This paper describes the underlying fuzzy concepts used to
enable reasoning in ambiguous environments, like improv
theatre. It also details the development of content for the
system, which involved the creation of a system for
animation authoring, design for efficient data reuse, and a
work flow centered on Google Docs enabling parallel data
entry and rapid iteration.

Introduction1
Improvisational theatre (or “improv”) has been a source of
inspiration for approaches in interactive narrative since
Hayes-Roth and Perlin’s works in the early 1990s (Hayes-
Roth and Van Gent 1996; Perlin and Goldberg 1996).
More recent approaches have similarly used aspects of
improvisational acting, such as the concept of status (i.e.
how powerful or meek a character is on stage) (Harger
2008) or object creation (i.e. introducing objects in the
world that have not been explicitly stated as not existing
there) (Swartjes, Kruizinga, and Theune 2008), to drive
interactive narrative works. However, these approaches
have been limited in scope because we lack a formal
understanding of the processes involved in improvisational
acting. In other words, it is difficult to build computational
improv actors because we do not understand the
phenomenon of improv acting well enough.

The work presented in this paper introduces the
knowledge and processes related to character creation that
we observed in our study of the cognitive processes
involved in human improvisation (Magerko et al. 2009;
Fuller and Magerko 2011). Our study of human
improvisers has involved actors engaging in different
improv games at our request, both in lab settings and in

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

professional theatre performances. After the engaging in
these games, we interviewed actors using retrospective
protocol, group, and, in the case of a professional
performance, semi-structured interview techniques. A
grounded theory (i.e. data-driven instead of hypothesis-
driven) approach to data analysis has uncovered several
main facets of improvisation that are relevant to building
computational agents. The first is the concept of how
improvisers build shared mental models (i.e. how actors
“get on the same page” during a scene), which is also
called building cognitive consensus. We have explored this
phenomenon formally in other work and have found that it
is a ubiquitous aspect of improvisation. Actors are
perpetually trying to reach a shared understanding on stage
between each other and between themselves and the
audience. The second is the construction of narrative on
stage. Many improv games have a strong storytelling
component, which results in the improvisers collaborating
in real-time on stage to develop characters, a relationship
between them, dramatic conflicts, etc. as part of the
improvised performance in front of an audience. A third
major aspect of our findings is the referents used by
improvisers (i.e. the constraints for a scene and tacit
knowledge about improvisation that they employ), which
has so far been beyond the scope of our work in terms of
rigorous analysis or computational modeling.

Both the general improv process of constructing shared
mental models and the more specific process of
improvising narratives (which often involves creating
shared mental models) require handling ambiguity on
stage. If an actor A comes on stage, peering at something,
and saying “Hrrrmmm, very interesting, very
interesting…” another actor B may come on stage and
interpret the utterance as A indicating that they are a
clinician, or perhaps a scientist, or even a detective.
Improvisation is a continuous practice of instantiating and
interpreting symbols without clear mappings for those
symbols. As improvisers work on building a shared mental
model, they make progress on agreeing on said mappings
(e.g. who is playing what character, where they are, what
they are doing together, what the main conflict in the story
is, etc.). This ability to reason about ambiguous symbols in
a collaboratively constructed story environment is quite
unlike the traditional methods used for story representation

in the computational world of interactive narrative (e.g.
planning operators, beats, story graphs, etc.).

This paper presents the current formalism that the
Digital Improv Project uses to handle ambiguity and
construct shared mental models. This formalism is based in
Lakoff’s concepts of categories and human cognition
(Lakoff 1989) and the computational approaches employed
in fuzzy logic (Bellman and Zadeh 1970; Alexander 2002).
This paper presents this formalism within the context of a
working digital improv installation called Party Quirks.

A typical game of Party Quirks involves four players:
one who plays the role of party host, and three others who
play as party guests. When the game begins, the host
briefly leaves the room, at which point each party guest is
assigned a “quirk” – some special trait for each guest that
is public knowledge to the guest actors and the audience
but not the party host. The host player then returns and,
within the context of hosting a party, aims to figure out
what quirk each guest is portraying through their
interactions. A guest typically leaves the scene when the
host has successfully guessed their quirk. The game ends
when there are no guests remaining or when too much time
has passed. In the case of time running out, the presenter of
the improv show may prompt the party host to guess the
quirks of any remaining guests.

The digital version of this improv game consists of
software agents acting independently to emulate the
communication processes and reasoning about ambiguity
that live actors demonstrated during performances in our
empirical studies (see Magerko et al. 2009 for an overview
of the empirical methods used). A human controls the host
in the virtual scene by using a menu-based system on an
iPad, which allows the user to stand and physically take
part in the virtual performance. The iPad’s touchscreen
also enables buttons to be dynamically labeled, reducing
the complexity of the interface by providing only the
interactions needed by the user at a given time. This paper
explains the underlying reasoning done by the AI actors,
provides an example of a system run, and reviews
evaluations of the work.

Modeling Character Prototypes
The authoring for a digital version of Party Quirks
involves the creation of character prototypes (e.g.
Cowboy) as possible quirks to portray. A prototype refers
to an idealized, socially recognizable construct that maps
to a certain kind of character (Lakoff 1989). The criteria
for selecting prototypes for inclusion were a) general
recognizability (e.g. Cowboy, Witch, and Mob Boss), b)
distinctiveness (i.e. Town Drunk and Mad Scientist have
relatively little in common), and c) potential for ambiguous
overlap of attributes (e.g. Pirate, Knight, and Ninja all use
swords).

Figure 1. Degrees of membership between prototypes,

attributes, and actions. Ninja has very strong (1.0)
membership in speed and medium (0.4) membership in
uses_magic. A Ninja can execute the fades into the shadows
action because it is available to prototypes that have a
uses_magic value between 0.4 and 0.7.

Each prototype is defined as a collection of properties

with varying degrees of membership (DOM) in sets that
represent character attributes (see the top half of Figure 1).
For example, Ninja has a low value for clumsiness but a
high value for sword_use, whereas Town Drunk has
opposite values. This approach is similar to how we have
seen portrayals of prototypes in our human data and
matches well to contemporary thoughts on how humans
categorize fuzzy concepts (Lakoff 1989; Rosch and Lloyd
1978). This layer of abstraction is important because
expressive actions often imply DOM for multiple attributes
(e.g. whether a sword is used in a clumsy or adept manner
communicates multiple association values.

Attributes are adjectives that define a prototype. Actions
are subsequently the physical acts that are used to
communicate attributes and are associated with at least one
<attribute, DOM range> pair (see the bottom half of Figure
1). For example, <uses_magic, 0.7-1.0> implies a high
association with magic usage, which is connected to the
action appearSuddenly. This same action also has a high
association with the attribute moves_stealthily, and
represents the range <moves_stealthily, 0.7-1.0>. Any
character with uses_magic or moves_stealthily between
these values can therefore execute the appearSuddenly
action on stage. This provides both a modular, data-driven
approach to authoring character behaviors and a shared
resource for all characters to draw from. Actions are
authored with four components:

1. 1. The name of the action
2. The set of attributes and attribute ranges that this

action is appropriate for (e.g. swashbuckling

action would be associated with <uses_sword,
0.7-1.0>)

3. Environmental requirements and consequences
(discussed below)

4. Dialogue associated with performing this action
5. The visual animation for acting in the virtual

environment
Prototype / attribute information is encoded in a Google
Docs spreadsheet, which is read into the system at run-
time. This allows us to easily change DOM values, add
actions, reassign animations, etc., without touching the
Party Quirks codebase.

We use a series of Boolean variables to describe the
state of the environment in a scene. However, unlike
normal boolean variables, their values are not always
known. Party Quirks, like much of improve, operates under
an open world assumption similar to the approach used in
(Swartjes 2010), which states that before a variable is
observed its value is unknown. In this context, the open
world assumption means, if a particular aspect of the
environment has not been explicitly stated to be true or
false, an agent can observe it to be whichever value it
prefers as required. Actions can thus have requirements
and consequences for the environment. For example, the
action feedAnimal has the prerequisite AnimalExists,
meaning it must either already have been explicitly stated
that animals are in the scene or nobody can have
mentioned animals at all, allowing the agent to introduce
an animal into the scene without disrupting any previous
statements. After the agent has executed the action, the
AnimalExists variable changes to true, alerting the other
agents to the existence of an animal (as implemented, these
variables are currently shared between agents though
future plans intend for them to be part of each agent’s
individual knowledge base).

Character portrayal is currently solely based on the
relationship between prototypes, attributes, and actions that
portray attributes. This does not currently address issues in
goal-based behavior, emotive performance, narrative
reasoning, etc., mainly because our work in
improvisational characters is iterative. We explicitly build
small agents as a means of providing a computational lens
for better understanding our data. Building these agents
provides for a cyclic process of data collection / analysis,
building agents, and a repeat of this process with a better
understanding of what to look for in our data or what kind
of data we need more of, which in turn enables us to build
more complex agents, etc. (Magerko, Fiesler, and Baumer
2010). We chose Party Quirks as our initial domain
because it lacks complicating factors (such as narrative
development) that make building a working agent too
monolithic and difficult without first understanding the
myriad working parts that go into creating improvising
agents.

Ambiguity on Stage

Calculating Ambiguity

The primary benefit of using fuzzy membership of sets is
that it captures the ambiguity inherent in improvisational
theatre. For instance, if an actor comes onto stage and
makes takes a long drink out of a make believe bottle, that
actor may be thinking about portraying a “town drunk,” but
that action is open to interpretation to other actors involved
in the scene. They could reasonable interpret him to be a
pirate, rock star, or perhaps a politician. In other words,
knowledge presented on stage can have varying degrees of
concreteness to them and that can be used by improvisers
to misinterpret an actor’s intentions, take a scene in a
surprising direction, or even intentionally push an actor in
a different direction than they had intended.

The ambiguity of a particular value for an attribute
represents how easy it is to determine the agent’s prototype
from that <attribute, value> pair. As such, the ambiguity of
a pair is dependent on how far the value is from the
average value for that attribute (how easy it is to tell it is
unusual) and how many other prototypes have a similar
value (how many possible prototypes could it be confused
with). After calculation, it is normalized according to the
other values for the prototype to allow for easy
comparison. We define the ambiguity of a data point n for
the set N of all values of a given attribute as:

An = (1 – |avg(N) – n|) / (|all values| - |values within 1 σ|)

Normalization step:

NAn = (An – min(A)) / (max(A) – min(A))

In other words, the ambiguity of an attribute value n is (1-
absolute value of the average of all values for the attribute
– n) / (the set of all values for the given attribute – the set
of values for the attribute within one standard deviation,
i.e. the number of values outside one standard deviation of
n). This value is then normalized according to the values
for the prototype’s other attributes (the smallest value
according to the above equation becomes 0, the largest
becomes 1, and the values in between are assigned
according to their distance between the minimum and
maximum).

An action’s ambiguity is based on the number of
attributes it is associated with and the number of
prototypes with appropriate values. For example,
appearSuddenly has two associated attributes (uses_magic
and moves_stealthily) and six prototypes with appropriate
values for at least one of those attributes. The formula we
use for calculating action ambiguity is simply (number of
associated attributes) * (number of relevant prototypes).

Decision Making Based on Ambiguity Values

Actors in Party Quirks can reason about this ambiguity to
give the host a natural path of discovery for the scene. Our
agents reason about this by comparing authored data to
determine the relative ambiguity of associations with each
prototype. For example, most characters have a low degree
of membership for bites_people, so this information is very
ambiguous and does little to clarify an actor’s quirk.
Conversely, because only a few prototypes (Kindergartner
and Caveman) have a high DOM for bites_people, that
high DOM information has low ambiguity and can steer
the host to fewer potential prototype matches. Therefore,
an agent portraying the Caveman prototype may avoid
executing an action associated with the bites_people
attribute early on since it represents a very unique
<attribute, value> pair. Portraying it too early would make
it easy for the host to guess Caveman, causing that actor to
exit early in the scene.

The calculated ambiguity values also provide the means
to determine how much the host’s interactions indicate
their convergence with the “reality” of the scene. In other
words, the actions that a human host executes indicate how
close they are to guessing a guest’s quirk (i.e. building a
shared mental model or reaching cognitive consensus
(Fuller and Magerko 2011)).

Users, playing as the host, have the opportunity to
interact with the agents. They can guess the agent’s
prototypes, ask questions or make assumptions about
individual attributes, prompt the guest with information
about the scene, or ask for help in various forms.
Whenever the host interacts with a guest agent, the agent
compares what the host did to the corresponding DOM
values. For example, the prototype Town Drunk has a
DOM of 0.5 for facial_hair. If the host asks if a guest with
the prototype Town Drunk has a middle value for the
attribute facial_hair, the agent sees the host’s assumption
is correct and thus notes the interaction as being
convergent, indicating the host is on the right track to
guessing the prototype. The convergence function also
accounts for the ambiguity of the different attributes. For
example, if the host asks if the Town Drunk has a low
value for sword_use, while the assumption is correct, the
value is common, and thus less convergent than if the
question had been for a high value of clumsiness, which
also correct but less common. This means interactions that
give more information are more convergent, as they show
the host is closer to the correct answer. It normalizes these
factors to a value representing how well the host’s action
converges with the guest’s actual quirk, with higher values
indicating the host is on the right track and lower values
indicating the host needs more help.

Convergence also plays a role in the kind of feedback
the host receives. When the host interacts with an agent,
an “applause” sound effect plays appropriate to the

convergence value. A lot of applause indicates the host is
close, whereas little to no applause lets the host know they
may not be guessing correctly. The decision to incorporate
this feedback element was based directly on feedback
given during public demo sessions of an early Party Quirks
prototype.

Character Portrayal Strategies

Agents can reason about the type of behaviors their
character should display to represent their prototype. They
have several options derived from our empirical
observations of improv actors (Fuller and Magerko 2011)
for how they can demonstrate their character’s quirk. At
the moment, these techniques can either be pre-selected by
whoever is running the system or randomly selected at
runtime. We have not been able to reliably discern the
heuristic information that improvisers use for selecting
from these strategies.

In one common technique, a guest presents ambiguous
clues early on and gets more specific with time, which we
call reverse scaffolding. The purpose of reverse scaffolding
is to keep a scene interesting; there would be little point to
the game if the host guessed the guest’s quirk immediately,
so actors like to start with less obvious clues to keep the
host guessing (note: this process is alluded to in the earlier
section). However, the game is also more satisfying when
the host is successful, so actors tend to get more obvious
over time, giving very specific clues near the end of the
scene.

Another technique, usually chosen for more humorous
purposes, is caricature, where a guest takes the quirk they
have been assigned and exaggerates it as much as possible,
creating more comedic situations. This involves selecting
very low ambiguous actions at the onset. Computationally,
we accomplish this technique by reducing the pool of
potential attributes to the least ambiguous, then selecting
only the least ambiguous action for each attribute.

Finally, guests may choose to take an alternative
approach to portraying their character and oppose a key
attribute, which computationally means the opposed
attribute’s DOM value is inverted (the new value is equal
to 1.0 minus the old value), the guest chooses the most
unambiguous actions when portraying the attribute, and the
attribute is chosen for presentation (i.e. a display to the
host) more often to emphasize it. One example of this
technique is a character with the quirk Pirate who chooses
to portray it by behaving according to the prototype except
with a low value of sword_use instead of the normally
characteristic high value.

Once an agent has decided how to portray its quirk
(either by random selection or having it pre-determined), it
will join the scene and make offers of information to
encourage the host to guess the prototype. It does this by

choosing and executing actions, with or without prompting
from the host. The decisions an agent makes are
dependent on whether or not the host has directly
interacted with it, as described below.

If a host has not spoken directly to the agent, the agent
may choose to continue performing its idle behavior
(basically just walking around) or to execute an action
anyway. Presenting an action in this case represents a
natural behavior for the character prototype, which is
something a character would do without provocation. The
algorithm for such a situation is as follows:

1. The agent considers its prototype and the DOM

values it has for each attribute compared to the
DOM values other prototypes have for those
attributes. It calculates how ambiguous its values
are for each attribute, then disregards the most
ambiguous attributes (the ones which, essentially,
have nothing to do with defining the prototype).

2. Once it has decided which attributes are important,
the agent looks at the <attribute, DOM range> pairs
defining each action in order to create a pool of
possible actions – that is, every action it can do
where the value for one of its important attributes
falls into the range specified by that action (see the
Modeling Character Prototypes section above for a
definition of actions). If the agent is portraying a
caricature of its prototype, it selects only the least
ambiguous actions for each relevant attribute.

3. If the agent is not reverse scaffolding, it chooses an
action probabilistically according to how recently
each has been executed (the more time has passed
since an action has been presented, the more likely
it is to be chosen again). If the agent is reverse
scaffolding, however, it bases its action selection on
the ambiguities of the actions. First, it orders the
actions in order of decreasing ambiguity. The agent
calculates how much time it has spent on stage
compared to the amount of time left in the scene,
then applies that proportion to the number of
actions in the list (so, if three minutes have passed
in a five minute scene and there are ten actions in
the list, it would pick the sixth position). It
probabilistically selects an action in the pool, with
the probability of each action being chosen based
on a Gaussian distribution centered on the position
designated by the proportion.

Agents also account for the current state of the
environment. Any action which has a requirement that is
currently opposed (e.g. if an action requires food in the
scene, but FoodExists has been observed as False) is not
allowed for consideration. Also, the probabilities of actions
that have environmental requirements are adjusted
according to how recently the relevant environmental

variable has been observed; the more recent the
observation, the more likely the action is to be selected.
This simulates a recency effect in which people are more
likely to remember and/or react to more recent pieces of
information than older ones.

If the host has indeed prompted the guest with an
interaction of some sort, the agent’s response depends on
the nature of the host’s communication. The host can ask
the guest for their value for a particular attribute, which is
called a Targeted Offer based on our research on shared
mental models (Fuller and Magerko 2011), such as asking
“What do you think about using swords?” In this case, the
agent responds with an action associated with their value
for the requested attribute. If the host attempts to verify
their concept of a guest’s value for a particular attribute,
called a Verification, the agent responds with a statement
confirming or denying the assertion and a presentation to
demonstrate its actual value. For example, if the guest
agent has the prototype Terminator and the host makes the
statement “I think you like to eat a lot,” the guest might
respond with “No, I do not require food” and a refusal
animation. The host may try to confirm the most recent
presentation the guest made as being associated with a
particular attribute (called a Confirmation), in which case,
again, the agent will answer with a confirmation or denial
and a presentation (i.e. a display to the host) for the
relevant attribute. In some cases, the host may get
frustrated and ask for better clues, called a Clarification
Request, and in response the guest will shrink the possible
action pool to be less ambiguous and make a new
presentation. The host can alter the environment if they
wish by making an Environmental Offer about one of the
various environment variables, in which case the guest
agent will respond with an action relating to the new
variable value if they can and a normal action if they
cannot. Finally, when the host thinks they know the guest’s
quirk, they can make a guess. If the guess is correct, the
agent acknowledges the host’s success and exits the scene.
If, however, the guess was incorrect, the agent considers its
prototype in relation to the guessed one. It selects an
attribute that is both significantly different between the two
prototypes and significantly un-ambiguous for the correct
prototype and then presents an action associated with the
chosen attribute (e.g. The guest says, “No, I’m not a ninja,”
then knocks something over to demonstrate clumsiness).
This indicates that the guess was incorrect and gives
justification for the difference.

All of these responses to the host also consider the
ambiguity of the possible options in relation to the
ambiguity of what has already happened in the scene. The
agent attempts to choose an action that is less ambiguous if
at all possible in order to push the host towards the correct
conclusion. If the previous actions are less ambiguous than
any of the options for response (such as if the agent is
using caricature, where all presentations are as

unambiguous as possible), the agent picks the least
ambiguous.

Multiple-Agent Portrayals

In our studies of improv actors, actors occasionally helped
emphasize another guest’s qualities in order to help the
host. These interactions name the helped guest directly and
target an attribute very specific to that guest’s prototype, so
as to give as much aid as possible. We call these specific
joint behaviours guest-to-guest interactions since they
involve interactions between a pair of guests to portray
information about a single guest. Guest-to-guest
interactions in our Party Quirks system are authored as
joint dialogue and animation instances that can be triggered
when the host is struggling. Two general situations tend to
trigger real-life guest-to-guest interactions, which we have
modelled. The first occurs when one guest has not
interacted with the host for an extended period of time,
which often happens if the host focuses on one actor
instead of interacting with everyone on stage. The second
situation happens when the game is nearly over, the host is
focusing on one actor, and the host-guest interactions are
significantly divergent from that actor’s quirk.

Example
Below is a simplified scenario involving a single guest
(multiple guests make the example too long for the
constraints of publishing this article) as a demonstration of
how users interact with the agents:

The stage on screen shows no guests present until the

user presses “Be the Host” on the iPad to begin. The guest
agent then appears on the projected virtual stage. The guest
has been randomly assigned a prototype, in this case
Pirate. The agent chooses to use reverse scaffolding to
portray its character.

The user is presented with buttons on the iPad to ask the
virtual guest about attributes (e.g. attractiveness,
fearlessness, etc.). The user decides to defer, waiting until
the virtual guest volunteers information before asking the
guest something.

The virtual guest pretends to be playing cards. Text
appears under the stage, saying, “I’ve got a full house.
Read’em and weep.” This action provides information
about multiple attributes, including playfulness and
willingness to gamble.

The user, to confirm whether this previous action was
about gambling (implying a prototype such as Mob Boss)
rather than playfulness (e.g. Kindergartener) chooses to
ask about the attribute gambles. On the iPad, the user
selects to ask a question about the guest’s gambling
activities, and asks whether the guest gambles a lot.

The guest gestures aggressively, with text underneath,
“Yes. I won that money fair and square. Well, sort of...”
This communication includes two components:
confirmation that the host was correct, and a new action
conveying related information. A small amount of applause
plays, indicating ‘Gambles a lot’ is converging on the
guest’s prototype but that there are also attributes more
relevant to this guest that the host could talk about.

The user chooses Guess Identity on the iPad to see which
prototypes might gamble a lot. These options are
displayed:

Wizard Knight Ninja
Pirate Terminator Sumo Wrestler
Superhero Mob Boss Town Drunk
Witch Princess Normal Person
Caveman Kindergartner Grandmother
Cowboy Mad Scientist Alien Invader

Suspecting that Town Drunk, Pirate, Mob Boss, and

Cowboy would be most likely to gamble, the user thinks of
an attribute to narrow down that list. Under Possessions in
the iPad menu, Sword is an option, which the user
recognizes as unique to Pirate. The user follows the menus
to inquire whether the virtual guest often uses a sword.

In response, the guest moves both hands to an imagined
hilt. Text below clarifies, “Yes. Make one wrong move and
I’ll finish you off.” The host hears a burst of applause
because this interaction was highly significant to the
guest’s prototype and has a high convergence value.

The user returns to Guess Identity, and guesses Pirate.
Because the guess is correct, the virtual guest leaves

stage. The text, “That is correct!” is displayed on-screen,
and applause plays to confirm the host’s guess.

Evaluation
The evaluation of the Party Quirks prototype has been a
difficult process, as is inherent for interactive narrative
systems. An evaluation of an interactive narrative system,
when it occurs, typically takes the form of lesion
experiments (e.g. “our system does A, so we provided the
system with and without A to study participants and
measured the qualitative and / or qualitative differences”)
or the subjective measure of public acceptance (e.g. “we
have over 5,000 downloads of our system). The most
common approach to evaluation is unfortunately to avoid
the issue altogether, due to the complex issues in even
creating a working, full-fledged system.

Evaluation of the Party Quirks prototype was done in
two stages. The first stage of evaluation focused on
usability and interface testing. There were multiple issues
at play when building this system, such as getting novices
accustomed to playing the improv game, using an iPad to
help the novices interact in a more naturalistic setting (e.g.

standing and facing the virtual actors on a projection),
having an appropriate representation of shared mental
model moves for the user to select from, and having users
actually attend to what was occurring on the projected
virtual stage as opposed to continuously staring at the iPad.

The second stage of evaluation was the formal
submission of the system to the Chicago Improv Festival
(CIF), a 13-year-old festival that hosts professional improv
troupes from all over the world. Following the same
guidelines as any other improv troupe, we submitted a
video of lab members using the Party Quirks application.
Party Quirks was formally accepted based on a review by
the experts judging the submissions and was presented as a
CIF performance at the ComedySportz Theatre as a three-
day installation.

The evaluation of submitting to an improv festival has
both its merits and drawbacks. The positive side of this
evaluation was that it was put through the same rigors as a
human improv troupe for acceptance into a major theatre
festival. This has a high benchmark for quality, compared
to the number of downloads for a system, for instance,
which says nothing about how much people enjoyed it and
what their backgrounds for judging works is. On the other
hand, the result of this kind of evaluation is highly
uninformative. It produces a Boolean result of “Accepted”
or “Not accepted,” without any further detail as to why the
result occurred. At this stage of the work, which is still in a
preliminary stage to buttress future work, we are satisfied
with the outcome as we prepare for larger scale systems.

The usability issues that we tested are of particular
importance as interaction with virtual characters, especially
without an avatar, is particularly challenging. We are
dedicated to avoiding a “point and click” approach because
we are invested in creating virtual theatre experiences that
mimic real-world improvisation with human actors.
However, as we build more complex agents, the medium
that the performances take place in will be heavily dictated
by the kinds of interactions that medium affords.

Discussion
Our implementation of the improv game Party Quirks has
led to the creation of a new kind of digital game: a mixed-
initiative theatre game where AI and humans can actively
participate in an improv game together. While we are
encouraged by the initial work done in Party Quirks in
representing character prototypes, the process of building
shared mental models, and an initial communication
framework for interacting with improvisational characters,
this initial system is not without its drawbacks. Users of
the system at the Chicago Improv Festival were generally
pleased and excited to use the system. However, users
often got stuck just guessing repeatedly instead of making
use of the other moves common in performances. This
points to a major issue of presence in the system – users do

not act like they are performing with the actors on a virtual
stage, but like they are prodding a system to see how it
responds. The virtual actors give an often-entertaining
response with any guess, which provokes the user to guess
again instead of selecting other moves. Future work in
interface design, such as using voice commands or gesture
recognition, may help actively involve the user in the
performance space rather than acting outside of it and
getting stuck in the most convenient menu option.

One common misconception of the Party Quirks system
is that it is an isomorph to AI approaches to 20 Questions,
the game where one player answers “yes” or “no”
questions from one or more people who are trying to guess
the object they have in mind. AI approaches to this
problem generally involve optimal decisions about
information gain. Our approach to cognitive convergence
in Party Quirks, and in digital improvisation in general, a)
is not concerned with optimality, to the extent that agents
will portray actions that “push” the human host in a
direction without jumping straight to a solution, b)
employs the reverse scaffolding strategy of being vague
early on in a scene and more heavy-handed as time goes by
(in general), and c) our scenario involves the human doing
the guessing as opposed to the AI, though one could easily
conceive switching roles.

We have considered building AI that plays as the host,
letting a human user or users play as guests. While that
may make the Party Quirks experience a more complete
one, the system’s purpose is still to serve as a prototype for
iterative research on building improvisational agents. This
system was built to explore the process of shared mental
models and character portrayal, which we have done.
Future efforts will be focused on applying what we have
learned to the construction of more complex agents.

The agents themselves are fairly generalizable in terms
of the number of attributes that can be used to describe
characters and the different mappings from attribute value
ranges to actions that can occur. This does represent an
authoring bottleneck, but one that can potentially be
resolved with the use of crowdsourcing techniques such as
Amazon’s Mechanical Turk. We are currently running a
crowdsourcing data collection to help populate our
description of the story elements related to a Western-
themed story world called TinyWest.

The main limitation with the definition of character
portrayals as they currently exist is that they are not
mutable. The only characters the agent can be portray in a
scene are the ones for which a prototype has already been
fully authored. Prototypes cannot be altered, augmented, or
combined. For instance, prototypes cannot be blended
together to create new prototypes (e.g. a mosquito that acts
like a drunk when it drinks blood) nor can they be created
with some antithetical property (e.g. a plumber who is
afraid of water). Our initial work focused on alternate
portrayal techniques like negation, where a prototype with
an extreme attribute value has that value inverted, which

relies on authoring an “afraid of water” attributes to create
“a plumber who is afraid of water.” However, even if that
approach is satisfactory, it does not answer how to create
amalgams of different prototypes, like mosquito and drunk.
This points to the need for future work to focus on how
agents can employ the process of conceptual blending
(Fauconnier and Turner 2003).
Another major limitation of these improv agents is that
they have no concept of narrative. They are incapable of
constructing a story or having dialogue acts that logically
progress over time. One possible approach to this would be
to create joint plans that could be selected and performed
based on user actions, as seen in Façade (Mateas and Stern
2002), but that would hinder our goal of equal co-creation
between humans and AI agents (i.e. the computer would
have privileged pre-authored story knowledge rather than
both the computer and human starting off as equals in the
story creation process). The narrative limitations of the
Party Quirks agents have fueled our current research
agenda of exploring conceptual models of equal mixed-
initiative collaborative story construction (i.e. AI and
humans are both on the virtual stage and equally share
responsibility in constructing the story). Continuing
research explores how agents can set up the initial
elements of a scene (e.g. where the scene takes place, who
the characters are, what joint activity they are doing
together, etc.) and how agents can find the “tilt” for the
scene (i.e. the main dramatic focus of the scene). This
work directly builds on what we have learned from
building the Party Quirks installation in terms of how to
interact with agents, the fuzzy knowledge formalism for
representing ambiguity in the world, and the construction
of support tools for creating animated improvisational
agents. The future of this work will be a synthesis of these
lessons learned from Party Quirks, resulting in a troupe of
synthetic improvisers than can jointly construct narratives
on stage with or without a human equal acting with them.

The fuzzy approach to agents for Game AI in general
has yielded promising avenues for reuse. While we have
currently applied it to the prototype definition of
characters, we have preliminarily found that it fits well for
prototypes of the other elements of a scene, such as
character relationships, joint activities, and the associations
between scene elements, such as the association between
motions on stage and the semantic actions those motions
are associated with. We have also begun to explore its use
in non-improv related settings that deal with semantic
ambiguity, such as the surrealistic guessing game DixIt,
which involves providing clues to other game players that
are ambiguous but not too ambiguous so that some people
(i.e. at least one player) understand the clue but not
everyone. Our model of fuzzy semantic descriptions and
communication based on ambiguity levels seems perfect
for this kind of environment and potentially other game
situations that involve communicating fuzzy concepts.

Acknowledgements

This work was funded by the NSF Grants IIS 0757567,
1036457, and 1129840.

References
Alexander, Thor. 2002. An Optimized Fuzzy Logic

Architecture for Decision-Making. In AI Game
Programming Wisdom, ed. Steve Rabin, 367-374.
1st ed. Charles River Media.

Bellman, R. E., and L. A. Zadeh. 1970. “Decision-Making
in a Fuzzy Environment.” Management Science
17 (4) (December): B141-B164.

Fauconnier, Gilles, and Mark Turner. 2003. The Way We
Think: Conceptual Blending and the Mindʼs
Hidden Complexities. Basic Books.

Fuller, D., and B. Magerko. 2011. Shared Mental Models
in Improviational Theatre. In Atlanta, GA.

Harger, Brenda. 2008. Project Improv. Project Improv.
http://www.etc.cmu.edu/projects/improv/,
accessed 8/1/2011.

Hayes-Roth, B., and R. Van Gent. 1996. Story-Making
with Improvisational Puppets and Actors. In
Technical Report KSL-96-09. Palo Alto, CA:
Stanford University.

Lakoff. 1989. Cognitive models and prototype theory. In
Concepts and conceptual development, ed. Ulric
Neisser, 63-100. CUP Archive.

Magerko, B., C. Fiesler, and A. Baumer. 2010. Fuzzy
Micro-Agents for Interactive Narrative. In
Proceedings of the Sixth Annual AI and
Interactive Digital Entertainment Conference.
Palo Alto, CA: AAAI Press.

Magerko, B., W. Manzoul, M. Riedl, A. Baumer, D. Fuller,
K. Luther, and C. Pearce. 2009. An Empirical
Study of Cognition and Theatrical Improvisation.
In Proceeding of the Seventh ACM Conference on
Creativity and Cognition, 117–126.

Mateas, M., and A. Stern. 2002. “A Behavior Language for
Story-Based Believable Agents.” IEEE Intelligent
Systems 17 (4): 39-47.

Perlin, Ken, and Athomas Goldberg. 1996. Improv: A
System for Scripting Interactive Actors in Virtual
Worlds. In SIGGRAPH \uc0\u8217{}96. New
Orleans, LA.

Rosch, E., and B. Lloyd. 1978. Principles of
Categorization, Cognition and Categorization.
Erlbaum, Hillsdale NJ.

Swartjes, I. 2010. Whose Story is it Anyway? How Improv
Informs Agency and Authorship of Emergent
Narrative. Enschede, The Netherlands: University
of Twente.

