Scribe: A Tool for Authoring Event Driven Interactive
Drama

Ben Medler and Brian Magerko

Games for Entertainment and Learning (GEL) Lab
Michigan State University
253 Comm. Arts Bldg., East Lansing, MI, USA 48824
medlerbe, magerko@msu.edu
http://gel.msu.edu

Abstract. Creating an interactive drama requires authors to produce large
quantities of story content. A programmer or knowledge expert typically creates
this content because they have experience with the story environment. By using
an authoring tool someone with less experience with the story environment can
organize and create story content. The Scribe Authoring Tool is an authoring
tool that will be used to create interactive dramas. The tool will follow certain
requirements to make it relevant to any story environment and will be usable
enough for someone not familiar with the environment to author story content
for interactive dramas.

Keywords: interactive drama, authoring tool, story representation.

1 Introduction

Authoring an interactive drama requires the author to generate a large amount of story
content [9, 13]. However, the creative process of authoring content for an interactive
drama typically requires an author that is both an artist (to generate the creative
content) and a programmer (to encode that content in the logical representation being
used, such as a partial-order plan [19], ABL [12], or plot points [9]). The creation of
tools to aid in the authoring process is a necessity to make this task both more
efficient and easier for authors who may not be computer programmers. Other
authoring tools have been made for interactive dramas such as DraMachine [6], Art-
E-Fact [8], and Scenejo [18]. These tools are lacking in encompassing everything
needed for an interactive drama. Authoring tools must be robust and usable enough
for them to encode their creative vision. It is for this purpose that we are creating a
new authoring tool that will be independent of both game environments and story
content and increase the scope of the available authoring functions for an interactive
drama creator.

The Scribe Authoring Tool is the new authoring tool being used for the Interactive
Storytelling Architecture for Training (ISAT). ISAT is a training architecture that
combines elements of the interactive drama architecture IDA [10] and intelligent
tutoring within a game environment [11]. The current instantiation of ISAT is being

developed to train field knowledge for combat medic students. ISAT uses a 3D game
environment and takes the trainees through a story that requires them to perform
soldier and medical duties while on active duty. Scribe will give subject matter
experts (SMEs), who typically have no programming experience, the means of
authoring relevant, meaningful interactive dramas that trainees will experience in this
3D game environment. We define requirements that are necessary for Scribe and
discuss how this new authoring tool will function.

2 Requirements for an Interactive Drama Authoring Tool

To avoid creating a limited tool, we examined what makes a good authoring tool and
how we could produce one that was more robust. We reviewed other authoring tools
and programs to define a set of further requirements, in addition to content creation,
that would have to be fulfilled.

2.1 Generality

Most authoring tools are made for a specific game environment or story setting [1, 2,
4, 5, and 15]. While these tools are efficient in their specific domain, they are not well
suited for the varying and dynamic storytelling environments that are needed for
interactive drama. A more general tool could be re-used across environments and
story contexts rather than reinventing a new tool.

2.2 Enables Debugging

Debugging becomes extremely difficult when dealing with interactive dramas due to
the large amount of content that they use. Interactive drama users are able to play
through many different possible storylines [9, 13]. Content must be produced in large
quantities with complex relationships between the various parts to allow for these
variable storylines. With this larger structure comes an increase in the number of
possible problems in both the system behavior and the authored content, such as poor
decision making by the intelligent agent coordinating the story, redundancy in the
storyline, continuity problems, or dead-ends that could affect the user experience.

It is difficult for the author to play through a large interactive drama fixing errors
as they play each storyline possibility [9, 13]. Debugging of this content is typically
done through playtesting the experience and observing if the correct behavior occurs.
An authoring tool could help facilitate this process by decoupling the real-time
experience of an interactive drama from the authored story content and agent
behavior. By allowing debugging inside of an authoring tool, the author will save
time by not having to switch into the story environment, and will be able to play
through the story quicker, with various story navigation options.

2.3 Usability

Authoring tools are used to make creating stories easier. If the tool is hard to use and
is not intuitive for a prospective author, then the tool becomes more of a hindrance
than an aid. Usability includes ease of learning, efficient to use, tasks are easy to
remember, and users make few errors while being overall pleased with using the tool
[14]. An authoring tool’s functions must allow the author to know what is happening
by not having complex feature sets or mislabeled functions.

2.4 Environment Representation

Each story that is written for one type of environment can be similar to the others in
many ways, but in different environments two stories can highly vary in game
mechanics, narrative devices, or user interaction abilities. To protect against these
varying environment definitions, an authoring tool will need an infrastructure to
understand these definitions and have a relative representation of any environment
defining these definitions. Examples of this representation include displaying map
data, providing relative variables to manipulate, determining Non-Player Characters
(NPCs) behaviors, etc.

2.5 Pacing and Timing

The pacing and timing of a story helps create dramatic feelings and allows the story to
have a greater appeal to the reader by timing when information is given to them [17].
Pacing and timing can be crucial to dramatic development and encoding these effects
is important to story representation. An authoring tool should allow an author to
create timelines that bring captivating effects to their stories, which as been done in
other narrative media, such as computer games, film, and literature. The tool should
provide the author with ways in which to specify their stories pacing and timing that
also adheres to the requirement of usability.

2.6 Scope

Interactive drama content includes: character behavior, story representation
definitions, dialogue scripts, etc. and an authoring tool must cover this wide scope
with authoring functions. This ensures that the pieces of an interactive drama can be
manipulated and understood by the author. This gives one centralized tool in which
these authoring functions take place.

3 Related Work

Authoring tools are used in many software developing situations as a means to
generalize the software building process to make building applications easier.

Authoring tools are found in PC game titles as a way for users to make their own
content for the game with little or no coding [1, 2, 4]. Game genres such as Real Time
Strategy (RTS) and Role Playing Game (RPG) generally have authoring tools that
accompany them. There have also been tools, such as Redux [15], that show how
authoring story content can be achieved for an environment such as the one in ISAT.
Besides related tools, other interactive drama architectures such as Facade [13],
MIMESIS [18] and IN-TALE [16] would benefit from using an authoring tool such as
Scribe.

Authoring tools used for RTS and RPG games are fine examples of how typical
authoring tools work in the game industry. Games like Starcraft [2], Warcraft 3 [4], or
Neverwinter Nights [1] have functional authoring tools that allow users to build
maps/levels, design gameplay effects, and create storylines. However, these tools are
domain specific and do not have the generality, or enables debugging, for
environment actions and story creation abilities that are needed for interactive drama.

Another authoring tool, ScriptEase [5], was made for a commercial game but was
produced from an academic perspective. ScriptEase is used to build gameplay and
storylines for an RPG called Neverwinter Nights (NWN). Again, this tool is domain
specific, but ScriptEase fulfills two of the requirements discussed above, generality
and usability, by generalizing actions and commands while using a simple interface.

Redux [15], an authoring tool that has influenced the design of Scribe, is used to
create Human Behavior Models (HBMs) and helps SMEs create annotated diagrams
that represent close quarter combat inside buildings. These models are then displayed
inside a 3D environment for trainees to study. Redux however only presents linear
diagrams of various tactics and models them. Scribe allows the creation of story
content that will be presented to the trainee in a nonlinear way, based on the director
agent’s decisions (described in the following section) and trainee interaction.

Other interactive drama authoring tools, DraMachine [6], Art-E-Fact 8], and
Scenejo [18], look into representing different parts of interactive dramas. DraMachine
separates different story parts so that authors can work a story piece by piece. Art-E-
Fact uses a directed graph approach to its stories and focuses on an NPC dialogue
system. Scenejo uses a similar dialogue system, which allows the author to set
different variables related to NPC actors. These variables use a dialogue database to
communicate with other NPC actors. While each of these authoring tools help with
certain pieces of interactive dramas, none of them bring together all of the
requirements for an interactive drama authoring tool.

A current interactive drama architecture used for training, IN-TALE [16], is
attempting interactive drama goals similar to our ISAT project. IN-TALE is an
architecture that, like ISAT, allows the story and environment to change accordingly
to how the trainee is acting. How ISAT differs from IN-TALE is that IN-TALE
focuses more on the behaviors of intelligent agents and how these behaviors will
make the story dynamic. ISAT focuses more on story representation and the trainee’s
specific action in the environment to influence a relevant storyline for that trainee.
ISAT is also including Scribe as the key to help produce this story representation and
manipulate how a trainee’s actions will affect the story. Currently IN-TALE lacks an
authoring tool for its architecture.

The field of interactive drama is sorely lacking in authoring tools for the myriad of
approaches out there, much less a tool that is general enough to be used with different

approaches. Other interactive drama works [13, 16, and 18] have architectures that
would greatly benefit from an authoring tool such as Scribe. Programmers, or other
knowledge experts, add time and cost to these other architectures. Having an
authoring tool that adheres to the above stated requirements will work well for all of
these story representation programs.

4 Overview of Scribe

Scribe is being created at the Games for Entertainment and Learning (GEL) Lab.
Scribe’s design is an attempt to fulfill the necessary requirements that are stated in
Section 2. It is being built in parallel with ISAT and will be using a simulation
environment called the Tactical Combat Casualty Care (TC3) trainer [7]; however,
Scribe is designed with the intent of being more general than use only within ISAT.
TC3 is a 3D game environment where Army medic trainees will be able to experience
and interact with the content that is created in Scribe. The TC3 environment allows
trainees to perform duties that will correspond to actions that a medic must perform
out in the field. Work has been completed on an interface prototype of Scribe using
Adobe Director. We are currently working on the core Java development of the tool
for integration with ISAT and the TC3 trainer.

The hypothesis behind the ISAT approach is that interactive drama techniques can
be used to provide more effective and engaging training experiences. ISAT’s main
component is an intelligent director agent that employs story-mediation techniques to
manage the story world in response to authored story content and trainee actions. The
director makes decisions based on the trainee’s actions in the world and the state of
the trainee skill model, which is the director’s hypothesis of the trainee’s aptitude in
the set of skills being trained. The director can alter the environment and selects plot
content to maximize the trainee’s learning experience. The author can create story
content and will provide information for the director to use and follow as it gives each
trainee their own experience in the environment.

5 Authoring Modes

The structure of Scribe is split into three different authoring modes, each with its own
functionality for producing story content:

e Element Placement will allow the author to view a 2.5D (shows a 2D figure
but annotates height similar to a topographic view) version of the
environment map. Here the author will place element pieces (defined below)
on the map. These element pieces will be the dynamic content that will
interact with the trainee.

e Story Creation is where the Author will create the storyline structure of
what will occur as the trainee plays through the story. Varying levels of story
detail allow the author to control different aspects of the story and its

elements. Story Creation makes use of the configuration of the element
pieces created by the author during Element Placement to create logical story
statements from the visual map representation.

e Debugging will allow the author to interact with the director agent inside of
Scribe. Here, the storyline can be easily navigated by the author and will be
allowed to query the director as to how it will handle various storyline
situations, which serves to both ensure that the story content and the
director’s behavior is correct.

Though this structure is comprised of three parts, Scribe allows the author to flip
between these parts freely, providing a larger scope for an iterative design and

debugging process. Changes to the story content areas are global in nature, giving the
Author the ability to change the content and have it reflected in all of the areas.

6 Scribe Authoring Example

6.1 Element Placement

Arvrns o L5

File EdE View Window

Elemants | 1 Pacirrmst || Soory Crnatios || Dot

P || Hiew -

Dbjen || Poire P -

Hew

Connecticns | | ctata e
Cmarfaton [60,1,0

Lk

| Connections

Fig. 1. Screen shot of the Element Placement window for the Scribe prototype.

This example illustrates the features of Scribe and how they relate to the overall
requirements described in section 2. The example involves three plot points (i.e.
scenes from the story) to explain the story modes. The first plot point gives the trainee
four wounded soldiers to treat. The plot point also requires eight friendly NPC

soldiers (the trainee’s squad) to be placed on the map as well. The plot point will have
the friendly soldiers standing guard while the trainee treats the wounded soldiers.

In this example, the author starts by creating a new project in Scribe and chooses a
map where the author would like their story to take place. In terms of the ISAT
project, a map is a large 3D model that is designed to look like realistic places a
military medic could find out in the field. The author chooses a map and a
representation of it is shown in Element Placement mode [Figure 1]. As part of the
generality requirement, we created a XML protocol that can be used to represent 3D
maps. This allows Scribe to understand any other map (necessarily ISAT specific)
that is encoded in the same XML protocol. Scribe can read a map’s XML file and
create a 2.5D representation that will show an overhead shot of the map along with
some height information, allowing the author to set elements on the map.

A Scribe element is anything tangible in the game environment that interacts with
the trainee (e.g. NPCs, environment objects, or invisible elements like spawn points,
which are described below). The goal of the Element Placement is to place these
elements and configure them for the plot point(s) with which they are associated.
There are three types of elements: objects, points, and zones. Objects are anything
that is visible to the trainee (e.g. NPCs, cars, buildings, trees, etc.). Points are invisible
coordinates that exist in the game environment that can be annotated for reference by
the director agent or for some use in the story. For example, a point can be used to
spawn enemy soldiers at its location or to denote a point of interest to the synthetic
characters. Zones are invisible rectangular prisms with dimensions that can be
referenced by the director agent or used in the story. For instance, an event could be
triggered when the player walks through a certain zone.

These element types fulfill part of the generality and environment representation
requirements. We find that many stories taking place in a 3D environment will be able
to use these three types of elements. Points and zones will allow the author to
organize sections and specific locations in a 3D world. Objects will represent the
tangible items that are seen in the environment. Examples of these element types have
been used before in 3D game engines such as the Unreal Engine, so these
representations have been generalized to fit most 3D environments [3, 9].

With the map now chosen and displayed, the author can start placing elements. For
this story example eight friendly soldiers and four injured soldiers must be placed on
the map according to the first plot point. Scribe allows the author to specify which
type of element is being placed. To place the 12 NPCs the author turns on “object
elements” and clicks on the map in the 12 spots they wish to place the NPCs. Each
time an element is placed, a temporary element is created, allowing the author to
annotate it with relevant information.

The author places 12 temporary object elements to represent the other NPCs on the
map. By clicking on any of the temporary objects a list of variables is displayed in the
Element Placement window. Each element has a set of variables that are associated
with it and are set by the author. These variables are determined outside of the tool by
encoding the list of variables, which the director agent understands, into a XML
protocol that Scribe uses, allowing for generality. This environment representation
ensures that the content is relevant to the environment.

Having set the 12 objects to eight soldiers and four casualties, the author has now
completed the setup for the first plot points. As explained in the next section, each

plot point has a start and end states that the elements of that plot point should be in for
the plot point to begin. To set these states, the author selects a plot point and
designates the current configuration as one of the plot point’s states. At this stage,
there are no plot points and the author must create one in Story Creation mode.

6.2 Story Creation

This section describes the design of the Story Creation mode [Figure 2], which was
implemented in our interface prototype and is part of our current implementation
efforts. Scribe uses plot points to describe major parts of the overall storyline, similar
to scenes in a play [10]. Each plot point consists of three parts: preconditions, events,
and actions, which were inspired by work done on IDA’s story representation [9].
These three parts help with the generality of plot points because the statements in
each of these parts can be relative to whatever environment Scribe is used for, as
shown below.

Authoring Tool EFx
File Edit Wiew Window
Plot Points | Flement Placement | Story C mmJ Plot Paint Properties

= PlotPointd

Nt et Plot Point Hierarchy

[rama]
Events:
Links:

Event Properties

PlotPoint1

Skills
1T PlotPaint3

skill
Weight

et Name] MoveOut

Group:faction ~
TypeJpave]
Poin]230,10,10

Unitfseconds
T\m—ehzd

PlotPoint2

Events

New || Time

Add FlotPoints

Events

Freconditions Actions Posteconditions

Buid Movedut Destroy NPC
Spann HPC Finalize Plot Poirt

Fig. 2. Screen shot of the prototype Story Creation window for Scribe.

Preconditions are logical statements that must be true for the plot point to occur.
For example, a plot point precondition may state that the trainee must be in the
marketplace (i.e. Location(User, Marketplace)). If the trainee is in the market place,
then that precondition is fulfilled. With the preconditions and other ordering
constraints fulfilled, the plot point can occur. Actions are logical statements that
describe the changes in the world caused by a plot point’s completion. For example, if
a plot point had the trainee meet a NPC, an action could state that they have met.
Finally, events are a set of statements that dictate what changes in the world occur
during a given plot point. This is similar to systems such as Fagade and IN-TALE that

use dramatic beats [12, 16] which represent important occurrences that happen
through out a story and happen over a fairly short period of time (about a minute).

Scribe events are used to temporally describe scripted, possibly temporally
overlapping, changes in the environment. An event could call for an NPC to move to
a new location, spawn a new enemy unit down the road, or start a dialogue that
involves the trainee. Scribe allows for events to overlap one another, something
IDA’s story representation lacked [9], and intermixes NPC behaviors or goals in with
environment commands. This is different from using ABL, such as in Facade and IN-
TALE, as it focuses on NPC behavior to achieve story goals [12, 16]. However,
Scribe currently assumes that NPCs are goal-based and directable. Note that Scribe
has the ability to work with NPC behaviors but does not create them. The ABL
language or Redux could be used to create NPC behaviors and could be imported into
Scribe.

When the author switches to Story Creation mode, the map is taken away and a
graph area to lay out plot points replaces it. The plot point graph area allows for the
visual organization of plot points and events. Plot points can then be created or
selected by the author and annotated (i.e. adding preconditions, events, and actions).
For this example, the author creates a plot point and it appears on the graph area. The
author then flips back to Element Placement mode and sets the initial position for the
elements appearing in this plot point.

Scribe is capable of making use of a planning algorithm or relying on the author to
causally connect each plot point to form a story plan. When the author sets a plot
point’s preconditions and actions for use in the story plan ordering and casual links
are created to connect plot points. Ordering links restrict plot points from occurring
until all order connected plot points occur. Casual links connect the actions of plot
points to the preconditions they fulfill. This representation allows for the possibility of
replanning when threats to the plan occur, as IN-TALE [16] or MIMESIS [19] would
do, but will also allow the author to create the plan by hand. The representation also
differs from typical narrative planning languages by incorporating the overlapping
temporal events within in plot point. The representation will be evaluated after the
completion of the tool for usability. Another option that could represent the story
graph would be to use a representation similar to ABL or IDA’s that has no explicit
causal representation [12, 10].

All statements (preconditions, events or actions) can be set in the Story Creation
window. Like elements, statements are defined outside of the tool, using a XML
protocol, and are defined to how the director agent will be able to understand them.
For this example the author creates two event statements, a dialogue and a conditional
statement. The author can then set the variables of each event, with each event having
its variables listed as part of the XML protocol.

The author adds a condition stating that after 300 seconds a new plot point will be
triggered to run. The trainee may be in the middle of treating a casualty, and a new
plot point could start. This does not mean that whatever the trainee was doing
immediately stops, what this means is that now a new set of events will start running
and may change the environment, forcing the trainee to react to these events. The
author then adds the dialogue event to the example plot point, which occurs after the
plot point starts and before the condition event starts. In this example an event is
placed that has a soldier telling the trainee to treat the wounded soldiers.

Events need a start and end time to facilitate the pacing and timing requirement.
There are three different types of time functions: fixed, random, and relative. Fixed
time is any static amount of time, for example, 300 seconds. Random time allows an
author to set a time range, zero to given number, in which a number will be randomly
selected at runtime. The last type is relative time, or time relative to other events. An
event could be set to start after another event ends, for example. These types provide
generality to how time functions for events. For usability, each event’s start and end
time are placed on a linear layered timeline that is shown in a similar way to how
movie editing software displays video clips.

The last thing that the author can use in Story Creation mode is the skill model.
ISAT is currently used for training medic skills, such as how to apply a tourniquet.
Performing skills correctly means that the trainee has a higher score in the
corresponding skills. Story statements can take this skill information into account,
such as setting how high a trainee’s skill has to be before a certain plot point can
begin. Again, skills are part of a XML protocol, for generality, that is read in by
Scribe. In this example the author does not deal with the skill values.

So the author now has a functional plot point in this example. The trainee will be
asked to treat the four casualties and after 300 seconds, a new plot point will begin.
As the complexity of the story increases, the possibility of more errors occurring
increases (e.g. director error, content error, etc.). In order to protect against these
errors, functionality for debugging the story is included in Scribe.

6.3 Debugging Story Content

Debugging the story in Scribe will be able to save a large amount of time that would
have been spent inside the environment going over the many different ways of
working through the storyline [15]. What Debugging mode will allow is a direct
communication link to the director, simulating how the environment will act for the
trainee. The director can be queried with a given situation in the tool and gives an
answer, with an explanation of why this decision was made. This allows the author to
determine both the correctness of the story content and the director’s behavior.

The example thus far has had only one plot point. Adding two more plot points will
give a better example of how debugging will potentially work inside of Scribe. These
next two plot points will introduce enemy units, requiring the trainee to react to their
presence. The difference between these plot points will be based on how well the
trainee is performing. If the trainee is easily treating the injuries then plot point 2 will
be chosen, otherwise plot point 3 will be selected.

In Debugging mode, the map is once again presented to the author. The map will
be used to display a rough version of how the elements on the map will look
throughout the plot points. The trainee is also simulated, both as a unit on the map and
as a skill model. This allows the author to move the trainee around on the map and
manipulate the skill variables to test how different positions and skill values affects
the director’s decisions. The author selects a plot point to test and then queries the
director about the story’s events. When the director makes story decisions it will take
into account: element setup on the map, the trainee’s location, the trainee’s skill
model, etc. The author may also query the director to choose the next plot point.

For this example, the author wishes to test which new plot point will be selected
next based on the trainee’s skill model. The author sets the simulated skill model to
show high percentages. The director should decide on plot point 2. The director,
however, chooses plot point 3 stating the trainee’s Apply Tourniquet skill was too low
(this explanation feature is still under consideration). This could mean the author
needs to set the apply tourniquet’s skill value even higher, or the director may be
interpreting the previous plot point’s events wrong. With the director’s actions known
the author can go back and make the changes needed to get the desired results.

Enables debugging is one of the harder requirements to fulfill because of all the
storyline possibilities that are part of interactive dramas. Debugging is scheduled to be
included in Scribe but currently is still being designed. However, this feature of
Scribe’s design is a novel one in the field of authoring tools and is potentially an
extremely useful one.

7 Discussion and Future Work

As stated before, Scribe has existed as a user interface prototype and is currently
under Java development. Currently, Scribe works with one environment and one
director agent. Additional environments should be easier to connect with by using the
various XML protocols to allow for generality and relevant environment
representation. Other representation abilities such as dialogue generation, which
depend more on the architecture used with Scribe, are included in the design but how
they will affect the tool is still being discussed. Usability of the tool has undergone
internal user testing, with future external usability tests to come further into
development. Events have the ability to have their pace and timing set so the story
can be controlled to a higher degree and Scribe is scheduled to enable debugging.
Scribe does a good job of fulfilling the above requirements and providing the scope
needed for an authoring tool that will be used to produce interactive dramas.

The director and Scribe interactions are still being finalized. How much power the
author will have over what the director can do with the story content must be
determined. Also, how the director uses the story content is still under development.
One example of this is whether a planner will be the best option to create the story
graph that will then be used by the director at run-time.

Debugging is currently low priority on the project schedule since it is not part of
the final project deliverables but it is a feature we want to add to Scribe. It is our goal
to at least get test cases and a prototype interaction with the director by the end of
next year. In the future, expanding on any work that is completed on Scribe’s
debugger, or testing other debugging methods, will be the best way to further the
abilities of this authoring tool.

The ISAT project is looking at whether interactive drama could be more effective
for training than by using other interactive or physical means. Scribe will help non-
programmers, the real users of these tools, create superior story content. Through the
definition of key areas of storyline creation, placing elements, creating the plot, and
debugging interactions, Scribe will ease the pressures of creating interactive drama.

References

. Neverwinter Nights, Atari, 2002.

. Starcraft, Blizzard Entertainment, 1998.

. Unreal Engine, Epic Games Inc., 1998-2006.

. Warcraft 3, Blizzard Entertainment, 2002.

. Carbonaro, M., Cutumisu, M., McNaughton, M., Onuczko, C., Roy, T., Schaeffer, J.,
Szafron, D., Gillis, S. and Kratchmer, S.: Interactive Story Writing in the Classroom: Using
Computer Games. International Digital Games Research Conference, Vancouver, CA,
2005.

6. Donikian, S. and Portugal, J.-N.: Writing Interactive Fiction Scenarii with DraMachina. /n
the Proceedings of the Technologies for Interactive Digital Storytelling and Entertainment:
Second International Conference, pages 101-112, Darmstadt, Germany, 2004. Springer
Berlin / Heidelberg.

7. Fowler, S., Smith, B. and Litteral, C.D.J.: A TC3 Game-based Simulation for Combat Medic
Training. The Interservice/Industry Training, Simulation & Education Conference, 2005.

8. lurgel, I.: From Another Point of View: Art-E-Fact. In the Proceeding of the Technologies
for Interactive Digital Storytelling and Entertainment: Second International Conference,
pages 26-35, Darmstadt, Germany, 2004. Springer Berlin / Heidelberg.

9. Magerko, B.: Building an Interactive Drama Architecture. In the Proceedings of the Ist
International Conference on Technologies for Interactive Digital Storytelling and
Entertainment, pages 226-237, Darmstadt, Germany, 2003. Springer Berlin / Heidelberg.

10.Magerko, B. and Laird, J.E.: Mediating the Tension Between Plot and Interaction. /n A4A41
Workshop Series: Challenges in Game Artificial Intelligence, pages 108-112, San Jose, CA,
2004.

11.Magerko, B., Wray, R.E., Holt, L. and Stensrud, B.: Improving Interactive Training through
Individualized Content and Increased Engagement. Interservice / Industry Training,
Simulation, and Education Conference, Orlando, FL, 2005.

12.Mateas, M. and Stern, A.: A Behavior Language for Story-Based Believable Agents. 4441
Spring Symposium Series.: Artificial Intelligence and Interactive Entertainment, Palo Alto,
CA, 2002.

13.Mateas, M. and Stern, A.: Facade: An Experiment in Building a Fully-Realized Interactive
Drama. Game Developer's Conference, San Francisco, CA, 2003.

14.Nielsen, J.: Usability Engineering. Morgan Kaufmann, 1994.

15.Pearson, D.J. and Laird, J.E.: Redux: Example-Driven Diagrammatic Tools for Rapid
Knowledge Acquisition. Behavior Representation in Modeling and Simulation Conference,
Arlington, VA, 2004.

16.Riedl, M.O. and Stern, A.: Believable Agents and Intelligent Scenario Direction for Social
and Cultural Leadership Training. Behavior Representation in Modeling and Simulation
Conference, Baltimore, Maryland, 2006.

17 Rimmon-Kenan, S.: Narrative Fiction. Methuen & Co. , 1983.

18.Weiss, S., Muller, W., Spierling, U. and Steimle, F.: Scenejo - An Interactive Storytelling
Platform. In the Proceeding of the Virtual Storytelling: Using Virtual Reality Technologies
for Storytelling, Third International Conference, pages 77-80, Strasbourg, France, 2005.
Springer Berlin / Heidelberg.

19.Young, R.M., Riedl, M., Branly, M., Jhala, A., Martin, R.J. and Saretto, C.J.: An

Architecture for Integrating Plan-based Behavior Generation with Interactive Game

Environments. Journal of Game Development, pages 51-70, 2004.

[N S N

