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ABSTRACT 
 
Recommendation systems are key components in many web applications (Amazon, Netflix, eHarmony).  
Each system gathers user input and searches for patterns that exist in order to determine user preferences 
and tastes. These preferences are then used to recommend other content that a user may enjoy. Games on 
the other hand are often designed with a one-size-fits-all approach not taking player preferences into 
account. This paper examines how current web application recommendation systems compare to current 
games that adapt their gameplay to specific users. The results from this comparison show that games have 
not to date used certain types of recommendation approaches. Design suggestions for how game 
developers may exploit the utility of these recommendation features are discussed and examined. 
 

INTRODUCTION 
 
Games are often designed with a one-size-fits-all approach. Developers attempt to design games that will 
reach as many players in their target audience as possible but the demographics that make up these 
markets are varied (Herrmann, 2007). Additionally as the amount of online players grows (Herrmann, 
2007) developers will need ways to precisely target their current player markets along with new potential 
markets becoming available. Developers could create niche games that focus on specific groups of 
players or instead leverage features that can adapt games to specific players in a larger audience. Players 
who are familiar with personalized content delivered online will come to expect games that mold, or 
adapt, to their preferences and tastes.  
 
Consequently, recommendation systems filter user input information in order to provide users with 
suitable content based on their preferences and tastes (Chen et al., 2007). This is accomplished by 
gathering data, filtering that data, and outputting filtered information based on the given initial inputs. For 
example a movie recommendation system may gather data about user demographics, user movie taste’s, 
and information about the movies themselves. The data is then correlated and cross checked using 
different filtering methods in order to search for patterns between the users and movies (Segaran, 2007; 
Adomavicius. & Tuzhilin, 2005; Vozalis & Margaritis, 2003). The final output to each user is 
recommendation information indicating other movies that matched the inputs with the search criteria.  
 
Producing output based on user preferences is a common characteristic recommendation systems share 
with adaptive systems. Adaption occurs when a game delivers output that changes the player’s character, 
non-player characters or the game’s environment/statistics based on player information the game gathers 
(Bailey & Katchabaw, 2005; Charles et al., 2005). Thus instead of the system recommending related 
items, similar to online recommendation websites, the game will alter the gameplay or game content in 
order to fit the preferences of each player. Some games offer adaptive features that manipulate gameplay 
based on the player’s skill level (Miller, 2004). There also exists a growing field of researchers that are 
building games that model player goals and traits in order to adapt to that particular player (Magerko & 
Laird, 2003; Thue et al., 2007; Togelius et al., 2007). Finding common ground between adaptive games 
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and recommendation system can help influence how these adaptive systems will be produced in the 
future. 
 
This paper argues that designing games that adapt to specific players will create challenging and engaging 
experiences for those players. One way to achieve this is by understanding how recommendation systems 
provide personalized content to users and how adaptive games can exploit those techniques. The author 
will begin by examining theories about creating situations where a person can have an engaging and/or 
challenging experience. This includes looking at how students learn within challenging environments and 
how challenging a person at their skill level can help them feel they are accomplishing something without 
becoming too bored or frustrated. Next, examples of how recommendation systems work within the web 
domain will be explored. These systems’ techniques can help produce adaptive games that create 
experiences like those stated in the theories presented. Then, examples of game-related recommendation 
systems will also be investigated, consisting of systems that work outside of any specific game and 
contrasting them with examples of adaptive games. Finally, after comparing current recommendation 
systems and adaptive games, the author will focus on the missing recommendation techniques that 
adaptive games have yet to employ. Offering design suggestions, those missing recommendation 
techniques will be related to current games and shown how they can be used to enhance gameplay. 
 

THEORETICAL FRAMEWORK 
 
Players play games for different reasons (Sherry et al., 2006; Yee, 2007; Lazzaro, 2008). In theory, 
having an adaptive game that can cater to a user’s specific reasons for playing will provide a better 
experience for the player than a game that has static gameplay. One of the reasons for playing, to face 
challenges, has been a target for adapted in games (Miller, 2004). Games inherently have conflicts or sets 
of challenges that players must overcome (Salen and Zimmerman, 2003). Facing challenges often means 
that a player wishes to improve their skills by taking on harder situations (Sherry et al., 2006; Lazzaro, 
2008) and can include other gameplay reasons such as the need to discover, customize or become a good 
teamworker (Yee, 2007). The reason why some players want to face challenges within games can be 
related to theories that explore how people learn when faced with new challenges.    
  
Lee Vygotsky’s “Zone of Proximal Development” (Vygotsky, 1978) states that students should 
continually be challenged at the fringes of their abilities in order to promote learning. However, students 
need a certain amount of guidance before they can begin to venture off alone with any learning material. 
The “Zone of Proximal Development” is determined by how much help a student needs verses how much 
they achieve by themselves. This is similar to the concept of scaffolding (Instructional scaffolding, 2007) 
where students are given a large amount of support at the beginning of their development and slowly 
taken away as they master the material. Scaffolding has been used in other adaptive learning systems, 
called intelligent tutoring, in order to monitor learners as they progress through learning material 
(Anderson et al. 1995). Treating challenge as a reason for playing games, and following the concepts of 
scaffolding, an adaptive game system can observe how a player is performing in a game and act 
accordingly. This is exactly how dynamic difficulty systems operate (Miller, 2004).Thus, understanding 
how well a player is learning how to play the game can be used as a gauge of how much challenge a 
player should face in the game. 
 
James Gee, following Vygotsky’s work, outlined a series of learning principles that he felt can be found 
inside video games (Gee, 2007). Five of these principles are relevant to adaptive systems:  
 

1. Achievement Principle – Learners receive achievements that reflect their skill level.  
2. Practice Principle – Learners must do redundant tasks over and over but in an atmosphere that is 

enjoyable.  
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3. Ongoing Learning Principle – Learners must go through cycles of learning. The line between 
learner and master is vague, master must routinely change their behavior to adapt to the game’s 
changing state.  

4. "Regime of Competence" Principle – Learners operate on the edge of their abilities where they 
feel challenged but not overwhelmed.  

5. Probing Principle - Learners probe the world, reflect in and on their actions, make a hypothesis 
and repeat.  

 
The first principle, Achievement, provides learners with rewards and incentives to continue to push 
forward. The Practice and Probing principles give learners safe environments where they can continually 
test their skills without the fear of being judged. Finally the Ongoing Learning and “Regime of 
Competence” principles explain how games continually challenge learners and allow them to alter their 
skills with the purpose of becoming a master of a skill set, just like the “Zone of Proximal Development” 
states. The first four principles all share one thing in common, they are all dependent on a learner’s skill 
level. What achievements are rewarded, what tasks must be done and the challenge put forth before the 
learner must reflect their skill level. Determining a learner’s skill level is similar to determining their 
tastes or preferences in order to provide adapt gameplay and, as will be discussed later, how 
recommendation techniques can help adapt to players. Probing, the final principle, is an example of how a 
player’s performance can be monitored. As players continually tests the game world their actions can be 
recorded and used to adjust the game’s content accordingly which parallels how a recommendation 
system works.  
 
Finally, as this section has discussed, adaptive games can deliver challenging experiences that hold just as 
much entertainment value as they do teaching value. However, not all players wish to continually face 
challenges and may want to play games for relaxation or to escape reality (Sherry et al., 2006; Yee, 2007). 
Adaptive games, for entertainment purposes, should be built to take these factors into account by 
monitoring how much of a challenge is needed to engage a player. Csikszentmihalyi’s flow theory 
explains that an individual is in a “flow” state, or an engaged state, when they are experiencing a situation 
that is equal to their skill level (Csikszentmihalyi, 1991). This means that the activity they are performing 
is not so hard that they become frustrated but not too easy where they become bored. Similar to Gee’s and 
Vygotsky’s theories, flow theory looks at bringing a player to the edge of their competency level and 
continually challenging that level. In contrast, flow theory can also be used to keep users in a state that 
they find engaging and enjoyable without having to continually push them with new challenges. Adaptive 
games can use flow theory to determine whether or not a player wants to increase their proficiency in the 
game and can continue to provide for that player’s desires. 
 
Achieving a challenging experience is similar to achieving a challenging learning environment given the 
theories stated in this section. Also, understanding how to provide a challenging experience can be used to 
create a less challenging, yet engaging, experience if it is deemed necessary. In order to create these 
challenging and engaging experiences a game must monitor and make assumptions about the player of the 
game, adapting to their preferences. While recommendation systems do not traditionally challenge users, 
the next section will explore how recommendation systems monitor their users and, later in the paper, 
how these techniques can be used for adaptive games. 
 

RECOMMENDATION SYSTEMS 
 
Recommendation systems gather information from a specific set of information, filter the information 
(meaning finding useful patterns), and then output relevant results to users or the system’s designers. 
These systems can be classified into three types of approaches: Content-based, Collaborative and a 
Hybrid approach (Adomavicius. & Tuzhilin, 2005).  
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• “Content-based recommendations: The user will be recommended items similar to the ones the 

user preferred in the past.” 
• “Collaborative recommendations: The user will be recommended items that people with similar 

tastes and preferences liked in the past.” 
• “Hybrid approaches: These methods combine collaborative and content-based methods.”  

 
Content-based approaches take an item-based and user-centric attitude while filtering. This means the 
output a user receives will be based heavily on the connections that exist between the items and 
themselves. An example of this is when Google Ad Sense determines the frequency of words on a 
webpage and delivers ads based on the most common words. In this case the user is the webpage and the 
items being recommended are the ads. In contrast, collaborative filtering takes a population-based 
approach to finding recommendations (both in terms of item population and user population). Looking at 
large populations collaborative approaches find patterns among the connections between every user and 
item and then relates a specific user to one of those patterns. These definitions are over generalizations of 
both content-based and collaborative systems but explain the principles of how each approach relies on 
different connection information that exists between users and items. 
 
When a system has a low population a content-based approaches perform best, since they find 
connections between a single user and items (Segaran, 2007). Once a large number of users have 
contributed enough data to a system the collaborative approaches become much more useful (Segaran, 
2007). Combining content and collaborative systems into a hybrid system can help alleviate the 
differences that exist between the two approaches (Adomavicius. & Tuzhilin, 2005). For instance, a weak 
example of a hybrid approaches is to perform a content-based filter  when the system’s user population is 
low, and then performing a collaborative filter as the population grows (Vozalis & Margaritis, 2003). The 
content-based and collaborative systems never touch one another, in this case, but greater integration of 
these two types of systems is possible (Adomavicius. & Tuzhilin, 2005). 
 

Input, Filter, Output 
 
The three phases of a recommendation system: input, filtering, and output, rely heavily on how a system 
sets up the connections between the system’s users and items. These connections exist as three different 
types: User to User, Item to Item, and User to/from Item. These connections allow a recommendation 
system’s filter to deliver outputs based on the connection patterns found. This sub-section will review 
each of these three phases and state how they compare and contrast to adaptive games. 
 

Input 
 
A recommendation system’s information connections begins with the collecting of initial input data, for 
instance movie recommendation system’s need movie information (genre, actors, and critic ratings) and 
user information (demographics, user ratings, and user actions). These information areas can be sorted 
into four categories which are also gathered by games: 
 

• User Demographics – Contains any personal user information: age, gender, occupation, or user 
relation information such as a user’s friends.  

• User Opinions – The user’s explicitly stated preferences about items or users. User rankings, user 
created categories, and user reviews would all fit into this category. Setting a game to easy, 
medium or hard is a small example of a player opinion found in games. 

• User Actions – Actions that a user performs while using the system. These actions are generally 
implicit actions, not specifically asked to be performed, since the explicit actions that users can 
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perform fit in the demographic or opinion categories. Examples of implicit actions include how 
users navigate a websites or what music a user has in their playlist.. For games, how a player 
navigates the game’s world or which quests they complete are implicit actions.  

• Content Data – Any information that is used to describe items or content. Again, a movie 
recommendation system will describe a movie by its genre, the actors that star in the movie, when 
and where the movie was shot, etc. In games describing the properties of a race track or player 
items are examples that compose the game’s content data. 

 
There are three things to focus on when relating recommendation systems to adaptive games, given these 
categories of information input. First, content data and demographics work the same in both kinds of 
systems, both follow generalized information templates that define users or content, yet few games have 
begun collecting user created information from these areas. User-generated content (YouTube.com) and 
demographic / profile websites (Facebook.com, Myspace.com) allow users to contribute their own 
information for recommendation purposes, while games could benefit from collecting this type of 
information. Second, user opinions are not often found in games but are important in recommendation 
systems for delivering output. This may mean asking players opinion during or after gameplay could 
enhance adaptive games. Third, both recommendation and adaptive systems obtain user actions and 
process them in real-time (or as close to real-time as possible). Recommendation systems usually process 
output on-demand or in one time instances but adaptive games need to produce output in real-time and 
continuously. However, looking at ways that games can use single instance recommendation and faster 
ways to output recommendations continuously may expand how adaptive games operate. 
 
In these ways adaptive games make use of similar data that recommendation systems would use to 
determine how a player’s game should progress (i.e. a recommendation). How adaptive games, and 
recommendation systems, decide what recommendations to deliver to their users is by searching the 
connections that exist between the four categories of data above and applying filters. 
 

Filter 
 
Filtering is the heart and soul of any recommendation system. The search algorithms and the type of 
connections they search make up a system’s filter, the process that will finally deliver the 
recommendation output. For example, a movie filter can recommend movies based on a user’s movie 
rankings, age, and which movie genres they enjoy, each of which could be searched through separately or 
in various combinations. The different kinds of filter algorithms are too numerous to explain in detail 
within this paper. Instead a general overview of algorithm approaches and their different search 
techniques will be discussed. 
 
There are two main types of filters, memory-based and model-based. Filters that are memory-based, 
meaning they have access to the input data (Vozalis & Margaritis, 2003), will use two types of connection 
or data comparisons: popularity and proximity. Popularity entails looking at how much weight is given to 
connections or data that occurs within, or between, items and users. Some examples include: Google Ad 
Sense looks for frequency of keywords within a document in order to display ads, a ranking website like 
Amazon uses explicit user ranking scores to find item popularity among users, and eHarmony.com, a 
dating website, connecting users who share common interests. Proximity comparisons look at how close 
data or connections occur between one another. One example is how Last.fm, a socially-drive music 
website, takes each of its user’s music playlists and determines how often different recording artists are 
found together within the same playlist. Using these two types of comparisons similarities between users 
and items are able to be determined based on the initial input that is provided to a recommendation 
system.  
 



Using Recommendation Systems to Adapt Gameplay | 6 
 

Model-based approaches to filtering use methods to predict a user’s preferences instead of reviewing the 
entire input dataset for every recommendation calculation (Vozalis & Margaritis, 2003). These filters will 
use the initial input data to train themselves to create a user models of each user. Once these models are 
created a system can make prediction how a user will act, such as how they will rank an item. Examples 
of model-based approaches include using Bayesian Networks and Monte Carlo algorithm methods 
(Adomavicius. & Tuzhilin, 2005; Vozalis & Margaritis, 2003).These model-based approaches have high 
overhead costs when they first compute the user models but these models provide recommendations 
faster, than memory-based filters, after they are create. A memory-based filter must consistently have 
access to the initial input data, which means it takes longer to retrieve recommendations but is always up-
to-date. The model-based approaches only have access to the previously constructed user model based on 
the most up-to-date information the system had at the models creation time. 
 
Games already make extensive use of model-based approaches when it comes to adapting gameplay to a 
player because they can produce faster results once a model is formed ( Magerko & Laird, 2003; Thue et 
al., 2007). However, memory-based approaches, which use large datasets of input data, have not been 
implemented for adaptive gameplay purposes. These two approaches to filtering data will be discussed in 
the context of games in the next section. 
 

Output 
 
Each recommendation system’s output is based on the patterns that the system’s filters found when 
searching through, or creating a model from, the input data. These final recommendations can include 
item recommendations, user relationship recommendations, popularity rankings for items or users, etc. 
Different filters will affect what kinds of recommendation sets are available for output. A content-based 
approach will generally give recommendations based on similarities between items a user has previously 
ranked, while collaboration systems will compare multiple users to one another and provide 
recommendations based on their collective input.  
 
One thing that differentiates a recommendation system from an adaptive game is that recommendation 
systems typically produce single instances of output and do not have to worry about ongoing interactivity. 
Adaptive games on the other hand can make use of their output to perform ongoing system behavior such 
as affecting the game’s storyline events or altering how difficult a level will become. This means that 
adaptive game output can have repercussions well beyond the current state of the game or have to 
consistently create new output in order to keep up with the interactivity of the game. 
 

GAME-RELATED RECOMMENDATION AND ADAPTIVE SYSTEMS 
 
Recommendation systems and adaptive games have been shown to have similarities and differences:  
 

1. Adaptive games can challenge users while recommendation systems help users.  
2. Adaptive games rely on implicitly gathering user actions to adapt games and do not typically 

gather memory intensive explicit information (user opinions, demographics and user-generated 
content) while recommendation systems do. 

3. Adaptive games must be able to deliver output to players in an interactive environment, 
continuously, but perform the same tasks as recommendation systems.  

 
This section will look at current examples of recommendation and adaptive systems that are related to 
games in order to explore these differences further. These examples are split into two groups: systems that 
exist outside of gameplay (non-real-time) and systems that function as adaptive game systems while a 
game is running. As will be shown, the example systems that occur outside of gameplay take on the role 
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of traditional recommendation systems while the in game examples will take an adaptive approach, 
making use of model-based filters to produce continuous output. 
 

Outside Games 
 

Game Review Websites 
 
While not connected to any physical game, rating and review websites allow players to rate games and 
receive recommendations about which games may be worth purchasing. Amazon.com and other 
recommendation websites like itog.com, allow their users to rate games and will recommend other games 
based on these ratings. However, these websites are not strictly game-related and produce 
recommendations for plenty of other items. New Grounds and Gamespot are game-only review websites 
that allow critics and users to rank and review games. Game review websites take a collaborative 
approach to recommendation and use a memory-based filter to deliver a popular vote for games to the 
website’s users. Game review and rating websites take a traditionally recommendation approach similar 
to other systems available on the internet. These websites do not have to worry about create 
recommendations in real-time but will provide some insight as to how memory-based filtering can be 
utilized for adaptive game design. 
 

Matchmaking 
 
Another category of game-related systems, that exist outside of gameplay, match players together to play 
games. Matchmaking systems pair together unrelated game players before they play a game. Xbox Live 
contains a matchmaking system which uses their TrueSkill player ranking protocol (TrueSkill (TM), 
2007) which matches players together based on their skill ranking within each game. Matching players 
based on their skill level creates an evenly matched game which offers players a better experience. The 
TrueSkill system uses a collaborative approach where the performance of the player is compared against 
the other players in a single game after the game is over. This means players have no explicit way of 
affecting their rating besides how they perform within each single game.  
 
TrueSkill uses a model-based type of recommendation filter that takes a player’s performance during a 
game and uses it to create a predicted skill value for the player. However, a player’s latest final game 
performance rating is the only value that is factored into their overall TrueSkill rank, thus previous ratings 
are never factored back into their current rank. In contrast to this model-based technique, recording how a 
player has progressed over a certain time period may help create better player data for adaptive games. 
Halo 3 is another example which matches players based on skill and experience. 
 

Inside Games 
 

Adaptive Difficulty Level Systems 
 
Most games allow a player to choose a difficulty level at the beginning of the game. This choice is set on 
a single linear scale from easy to hard. A few games take away the need for users to make this choice at 
the beginning and instead adjust the difficulty level throughout the game. One concept that achieves 
dynamic difficulty is rubberbanding (“Rubberband AI,” 2008) which affects the strength of each player 
throughout the game. A system using rubberbanding makes it hard for players to fall behind or get to far 
ahead in the game. For example, the game Mario Kart, a racing game, uses rubberbanding by giving 
stronger items to the players that are lagging behind in the race. These items will help the losing players 
catch up to the other players, thus affecting the competiveness of the game. This is an example of a 
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collaborative system using a simple model-based filter, based on each player’s current position, to 
determine how much help or hindrance each player receives.  
 
For multiplayer competitive environments, e.g. sports or racing, with two or more players rubberbanding 
can be used effectively. Single player games, however, must use a player’s performance based upon 
difficulty assumptions of the gameplay itself in order to create a competitive environment. Max Payne , a 
first-person shooter (FPS), is an example of a single player game where a player’s information: health, 
accuracy, and number of kills, is recorded and used to adjust the game’s difficulty. These records are 
compared against difficulty thresholds that are used to judge how well a user is playing the game (e.g. the 
player’s accuracy was perfect in the last level so the game’s difficulty will rise). This is another instance 
of a model-based approach within a content-oriented system where the player’s most recent performance 
is used to determine the player’s overall skill level (the model) for the next phase of the game (the 
content). This is supposed to create a flow situation where the user is constantly being challenged based 
on their skill level but never overwhelmed (Csikszentmihalyi, 1991). Other games that use dynamic 
difficulty approaches including, Sin: Episodes, Prey, and BioShock. 
 

Player Modeling 
 
Researchers are working on building adaptive systems that use player types (Bartle, 1996, 2003; Yee 
2007) as a means to model players and alter gameplay accordingly (Magerko & Laird, 2003; Thue et al., 
2007; Togelius et al., 2007). Three systems will be discussed in this section and each take a slightly 
different approach to gathering player data and creating internal player models. These player modeling 
systems are similar to content recommend systems using model-based approaches because they gather 
input from a single user and use their actions to form an internal prediction model of the player. 
 
The Interactive Drama Architecture (IDA) was built to use a player model to help restrain the player from 
breaking the bounds of a game’s story (Magerko & Laird, 2003). Interactive Drama is the concept of 
adapting a story to facilitate the preferences of a player, generally being achieved by using artificial 
intelligence (AI) to analyze a player’s actions. IDA contains an AI Director agent which records the 
player’s actions as they advance through the story. When the Director thinks the player is about to affect 
the story in a negative way (e.g. kill a main character, leave the playing area, or stall the story) proper 
actions can be taken in order to keep the story flowing (causing a distraction or providing a subtle hint) 
and moving forward.   
 
A similar approach can be found in the PASSAGE system (Thue et al., 2007). Built on top of the Never 
Winter Nights engine, Aurora (BioWare, 2002-2008), the PASSAGE system also records a player’s 
actions throughout a role-playing game (RPG). These actions affect different traits about a player that 
help determine what type of player is playing the game. There are five traits that a player is scored on: 
Fighter, Method-Actor, Storyteller, Tactician, or Power Gamer. Traits then determine what kind of quests 
the system will recommend and present to the player. For example, a player that chooses to always fight 
to finish a quest will be given future quests that focus mainly on fighting.  
 
Last, a system built by (Togelius et al., 2007) adapts racetracks within a racing game. Each time a player 
completes a race a new track is procedurally generated based on the skill level of the player. The authors 
of this system found that optimizing tracks based on the player’s skill were boring to players but that 
tracks were enjoyable when they were slightly harder than the player’s skill level. As long as the player 
continues to play within the system it is able to create better track recommendations based on that 
player’s skill level.  
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It should be noted that these systems do not allow players to affect their player model directly. Users of 
recommendation systems feel that the system works better when they have more control and wish the 
system to merely augment their experience, not completely take over (McDonald, 2003). It has been 
suggested that players be given a more explicit means of providing data in games as an additional way of 
gathering user input for adaptive purposes (Charles et al., 2005). 
 

RECOMMENDING ADAPTIVE GAMEPLAY 
 

 
Figure 1.  A graph of which recommendation approach and filter each web-based and game system uses. 
 
Figure 1 graphs web-based recommendation and game adaptation systems based on each system’s 
approach and filtering methods. The graph shows that while both types of systems take different 
approaches: content, collaborative or both, web-based systems focus on memory-based filters while game 
systems focus on model-based filters. This phenomenon occurs of the differences between adaptive 
games and recommendation systems: games need to produce challenges, games need to adapt in real-time 
and games do not collect memory intensive information.  
 
Games need to produce extremely fast interaction results to provide real-time actions and challenges. 
Models will allow a system to avoid consistent checking and rechecking of input data, which would occur 
using memory-based models. Yet model creation incurs high overhead costs. Current entertainment 
games get around this fact by implementing limited modeling algorithms. For instance, the TrueSkill 
system and dynamic difficulty systems will produce player models only at specific points during the game 
or after its conclusion, and will only create collaborative models using small groups of players. 
Additionally models that continuously update themselves (i.e. the rubberbanding model) use simplistic 
information that can be quickly processed, such as race position, and do not use make use of memory 
intensive information. However, player modeling systems that are currently being researched have begun 
to go beyond these simplistic modeling functions to allow for more information to be gathered. 
 
Web-based recommendation systems using memory-based systems are efficient in their own way. 
Connections between items and users can be easily computed and stored by employing databases to keep 
computation time down. While real-time computing is not as necessary for websites they do need access 
to accurate information, which is why memory-based filters are preferred. Under these circumstances 
web-based systems can relay recommendations back to the user that are up-to-date. Finally, the rare use 
of models for web-based systems may be due to the fact that models run the risk of over generalizing 
users and with most web-based systems containing thousands, if not millions of users, this could limit 
recommendation results. 
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While these two mediums, games and web-based systems, may have different goals in mind that does not 
mean they cannot learn from one another. Looking at games specifically, the notion of using memory-
based filters seems to be non-existent (although game review websites use memory-based filters their 
goals are the same as other web-based recommendation systems, not games). Additionally entertainment 
games only make use of simple model-based approaches that deal with data from either a single player or 
a small group of players. Recent academic work has looked at expanding these models for single player 
use but large games, such as MMOs, could use model-based filters that work with larger player 
populations. Thus, reviewing ways that adaptive games can use explicitly gathered information (e.g. 
player opinions) with model-based filters and create models from larger populations may prove useful for 
creating adaptive games. 
 

Games Using Memory-based Filters 
 
Memory-based filters use large datasets that are collected over an extended period of time and contain the 
latest player and game information. These datasets could include information from the four information 
areas that recommendation systems gather. Examples of how games can use these information areas 
include examples that are already used by web-based recommendation systems: ranking content, profile 
matching, and tracking user actions. 
 

Ranking Game Content 
 
Ranking systems are the most common form of recommendation systems (Adomavicius. & Tuzhilin, 
2005). Users are asked to rank items with a fixed number scale (1 to 5, 0 to 10, etc.). Each ranking score 
is recorded and linked to both the item and the user. Games rarely allow players to rank their experience 
in such a way. Building a memory-based filter where players rank a game’s content and their experiences 
is a way to make use of both content and collaborative approaches for adapting a game based on player 
opinions.  
 
First, ranking difficulty level could be used to help dynamic difficulty algorithms. Instead of the system 
judging the player’s overall skill level the players themselves can state how difficult the game has been 
thus far. Second, players of massively multi-player online role playing games (MMORPGs) or single 
player RPG games could use similar tactics for determining which quests players will enjoy. After 
completing each quest a player could be asked to rank the difficulty, story aspects and the aesthetics of 
the quest. However in order to maintain agency within the game environment gathering ranking data 
would not have to be as explicit as displaying a ranking display similar to one found on Amazon or 
Netflix. For instance, various non-player characters (NPC) within WoW could ask the player for their 
ranking score while staying in character, asking questions relevant to the story. Third, games such as 
Spore rely on user generated content. Spore’s developers have stated that users will be able to rank the 
user generated content built for the game (Shaw, 2008). In this case, each piece of content will be treated 
like an item found on an e-commerce website. In that way a collaborative recommendation system could 
be set up similar to those found on Amazon.com, Netflix.com or game websites like Kongregate.com. 
Games would automatically download content based both on overall ranking and how the aesthetics of 
the content meshes with the content that the player already owns. This would allow users to discover and 
download the available content that is of higher quality. 
 

Profile Matching 
 
Profile matching occurs on a number of different websites and is used for: social networking 
(Facebook.com), dating (eHarmony.com) and information sharing (Last.fm). These websites ask users to 
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contribute demographic or content information so they may match the users together based on the data 
provided.  Games can make use of profile matching both inside and outside of games.  
 
Matchmaking does occurs outside of gameplay, for example the Trueskill system on Xbox Live 
(TrueSkill (TM), 2007). However, games could instead add the feature of matchmaking as an in-game 
mechanic and allow players to create profiles or match them along other game-related criteria. For 
example, World of Warcraft (WoW) allows users to announce that they are looking for a group to play 
with through various quests in the game. Though the system does not match players by their skill level 
(players on the same level will likely share interests), only by their need to join a group. However WoW 
does allow users to search the server for players that are around their level. If WoW used an internal 
profile matching mechanic it could match players, that need groups, together automatically based on their 
skill level or other criteria, similar to how Halo 3 matches players in-between matches.  
 
Besides matching players together by skill level, a game could also allow users to have game profiles 
within the game. Players could use these profiles to create lists of their favorite content, allow for more 
role-playing options by giving them a personal section to write about their online personas, or give them a 
place to connect with other players. Furthermore, profile could also be made global, used by multiple 
games, which would help game portals or content delivery systems (websites or programs that allow 
access to many games, for example Valve’s Steam system). These profiles would extend beyond any one 
particular game, becoming similar to online social networking profiles (e.g. Facebook and Myspace). 
Using profiles in this external way could be used to create connections between games and other interests 
a player may have outside of games, similar to websites like itog.com. For instance, a game profile that 
allows players to state outside interests could point “dog lovers” to virtual pet games like NintenDogs or 
NeoPets. 
 

Action Tracking 
 
Statistics tracking of player actions allows developers to review how players are playing their game and 
find any faults that may exist (Ludwig, 2007). This is also true for websites which use tools like Google 
Analytics to record how users are navigating and performing actions on a websites. Recording player 
actions was the key data collection method both for the adaptive and player modeling systems presented 
earlier in this paper. Current commercial games do record actions for gameplay purposes, for instance 
recording what quests a player has already performed, such as in World of Warcraft. This data is also 
used by some games that allow for extensive statistics tracking of player actions such as Steams statistics 
system (Valve Corporation, 2007). This type of elaborate action recording is used to gather information 
including: how long a game took to complete, which in-game characters are the most popular, or where 
players die the most often in the game.  
 
This statistic information could be used to help recommend or adapt gameplay for players. Two examples 
used in games are 1) Dungeon Siege, a RPG, changes a player’s character based on what items or skills 
they use frequently as they play the game and 2) Oblivion analyzes how a player behaves in its tutorial to 
suggest which class the player should choose for rest of the game. Another beneficial way of using player 
actions would be to combine actions from multiple players and make general assumptions about 
gameplay. If a system knows that 80% of players die in a certain area then the system could adapt to give 
a non-skilled player an easier time in that area. Other games which contain re-playable levels (e.g. Grand 
Turismo or Guitar Hero) could record how often a player plays certain levels and mark those levels as the 
player’s favorites. If new downloadable levels (e.g. songs, race-tracks, etc.) are made available for these 
types of games then the system could also make recommendations based on these preferred game levels 
that the system has already determined. 
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Games Using Extended Model-based Collaborative Filters 
 
The second way that games can utilize recommendation system functions is to gather data from a larger 
player population. Having access to larger datasets would allow games to create complex modeling filters 
that could generate player models from multiple players. Games that use model-based filter are usually 
limited lo single players or smaller populations, in the case of rubberbanding and matchmaking. Yet, 
model-based collaborative filters could connect player data together and form generalized player models 
using a game’s entire population space.  
 
StumbleUpon.com uses large sets of user profile data in order to recommend other users and items to 
users that have similar profile data and action patterns. This is similar to how the player modeling systems 
create models except they use much smaller player populations. Instead games could use this type of 
population information to create multiple player models that would be used to categorize players. A set of 
overarching player models could be achieved in this way allowing starting models to be applied to players 
as soon as they begin a game and can be refined as they continue to play. Even for a single player game, 
once one player model is created from a users play style it could be uploaded online and then be applied 
to other connected players who exhibit similar gameplay behavior. In cooperative multiplayer games 
player models could also be used to match players with other players of the same or complimentary 
models or, alternatively, players with conflicting models could also be matched together for competitive 
games.  
 
In a larger scope player modeling could be used to create games that contain vastly different gameplay 
experiences based on each player’s model. Many games already allow users to experience different 
gameplay throughout the game. For instance World of Warcraft designers have stated that their item 
auction system was designed to be harder to operate in order to force a player to decide whether they want 
to play the game as a trader or as an adventurer that spends most of their time away from the game’s cities 
(Pardo, 2008). A more concrete example of different gameplay methods can be seen in games such as 
Natural Selection or Savage. These games allow one player to act as a commander who operates in the 
game world from an real-time strategy game perspective, while every other player plays the game like a 
first person shooter. These games allow the commander to be elected to the position but if a game used 
player models it would be able to recommend which players are best suited to be the commander (based 
on their past game performance perhaps). Furthermore a game could actually alter which game features 
are presented to users based on their player model. A fighter could receive more statistic tracking 
information or special moves that cause more damage, while a trader could receive better trading options 
or economic features. Player modeling could shift gameplay completely based on the analysis of how a 
player plays a game. 
 

CONCLUSION 
 
As it has been shown in this paper both challenging and engaging a user requires systems to monitor that 
user’s preferences and skill level. Recommendation systems monitor users to help the system filter 
information that will be useful to the user. Adaptive games also monitor players to help the user find 
useful information but the information is used to provide a challenging or engaging experience in the 
game. Since recommendation systems and adaptive games both monitor users and filter information that 
will be given to those users they use the same types of methods and techniques when filtering and 
delivering output. 
 
This paper began by looking at theories that state how challenging and engaging experiences are created 
for a user. One major factor in producing those types of experiences is by monitoring a user and altering 
the situations content to meet that user’s needs. The author argues that both recommendation systems and 
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adaptive games can monitor and adapt to users.  This began by exploring the methods and techniques that 
structure different recommendations systems.  
Following an input, filter, and output information pipeline recommendation systems begin by collecting 
data in these four categories: user demographics, user opinions, user actions, and content data. 
Connections that exist between those data categories within a recommendation systems can be content-
based (i.e. focuses on single user connections), collaborative (i.e. uses entire user population connections) 
or a combination. Additionally, filters within recommendation systems can take a memory-based (slower 
and accurate) or model-based (faster and generalizes) approach when searching for connections to finally 
output. Next, recommendation systems were compared to other game-realted recommendation systems 
and current examples of adaptive games. 
 
While adaptive games and recommendation systems use similar techniques for filtering and output, they 
contrast in their goals, and therefore their characteristics. Games need to provide output that is in real-
time and continuous. This means adaptive games usually make use of model-based filters in order to 
make recommendations quickly as to how the game should progress. Since memory-based filters are 
rarely used by games, player information: opinions, demographics and actions, are not stored long term 
and player actions are gathered implicitly as to speed up the information gathering process. Meaning a 
game’s model-based filter must a) process simple information or b) gather information in small intervals 
throughout the game which is discarded once a new model is formed. Additionally, to order to provide 
continuous output, model-based filters only model single players or a small group of players at once 
within current games.  
 
What this paper has shown is that while model-based approaches have been achieved and do provide 
challenging experiences for players, adaptive games have yet to seriously employ memory-based and 
complex collaborative model-based filters. Reviewing how these approaches are being handled by web-
based systems new design suggestions for how they may be incorporated into games were discussed. 
Given that adaptive gameplay and recommendation systems follow the same principles, exploring these 
other methods may lead to new approaches to adaptive gameplay. 
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